Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex.

Stem Cell Reports

Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, National Research Center for Environment and Health, 85764 Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany. Electronic address:

Published: December 2014

The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX)(+) neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX(+) cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264057PMC
http://dx.doi.org/10.1016/j.stemcr.2014.10.007DOI Listing

Publication Analysis

Top Keywords

ng2 glia
12
cerebral cortex
12
glia induced
8
induced neurons
8
adult cerebral
8
neurons
6
cells
5
sox2-mediated conversion
4
conversion ng2
4
induced
4

Similar Publications

Background: Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood.

View Article and Find Full Text PDF

Oligodendrocyte Progenitor Cell Transplantation Reduces White Matter Injury in a Fetal Goat Model.

CNS Neurosci Ther

December 2024

Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.

Background: Preterm white matter injury (PWMI) is the most common type of brain injury in preterm infants, in which, oligodendrocyte progenitor cells (OPCs) are predominantly damaged. In this study, human OPCs (hOPCs) were administered to a fetal goat model of PWMI to examine the differentiation potential and therapeutic effects of the cells on PWMI.

Methods: Preterm goat fetuses were subjected to hypoxic-ischemia (HI) via intermittent umbilical cord occlusion (5 min × 5).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurodegenerative disorder involving demyelination. The cuprizone model is commonly used to study MS by inducing oligodendrocyte stress and demyelination. The subventricular zone (SVZ) plays a key role in neurogenesis, while the neuronal/glial antigen 2 (NG2) is a marker for immature glial cells, involved in oligodendrocyte differentiation.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!