Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The indirect anodic oxidation of chalcone epoxides in the presence of electron-rich heteroarenes mediated by a triarylimidazole (Med) was investigated by cyclic voltammetry (CV) and controlled potential electrolysis. The CV results indicate that a homogeneous electron transfer between Med•+ and chalcone epoxides is facilitated by an electron-rich heteroarene that serves as an arylation reagent. The preparative scale electrolysis generated epoxide-ring-opened/Friedel–Crafts arylation products in moderate to good yields. The fact that only a catalytic amount of charge was required suggests that Med•+ initiates a chain reaction. In addition, overoxidation of the products is avoided even though their oxidation potential is less than that of the starting chalcone epoxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo5022184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!