A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a high-efficiency gene knockout system for Pochonia chlamydosporia. | LitMetric

Development of a high-efficiency gene knockout system for Pochonia chlamydosporia.

Microbiol Res

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China. Electronic address:

Published: January 2015

The nematophagous fungus Pochonia chlamydosporia, which belongs to the family Clavicipitaceae (Ascomycota: Pezizomycotina: Sordariomycetes: Hypocreales), is a promising biological control agent for root-knot and cyst nematodes. Its biocontrol effect has been confirmed by pot and field trials. The genome sequence of the fungus was completed recently; therefore, genome-wide functional analyses will identify its infection-associated genes. Gene knockout techniques are useful molecular tools to study gene functions. However, cultures of P. chlamydosporia are resistant to high levels of a range of fungal inhibitors, which makes the gene knockout technique difficult in this fungus. Fortunately, we found that the wild P. chlamydosporia strain PC-170 could not grow on medium containing 150μgml(-1) G418 sulfate, representing a new selectable marker for P. chlamydosporia. The neomycin-resistance gene (neo), which was amplified from the plasmid pKOV21, conferred G418-resistance on the fungus; therefore, it was chosen as the marker gene. We subsequently developed a gene knockout system for P. chlamydosporia using split-marker homologous recombination cassettes with resistance selection and protoplast transformation. The split-marker cassettes were developed using fusion PCR, and involved only two rounds of PCR. The final products comprised two linear constructs. Each construct contained a flanking region of the target gene and two thirds of the neo gene. Alkaline serine protease and chitinase were confirmed to be produced by P. chlamydosporia during infection of nematode eggs and could participate in lysis of the eggshell of nematode eggs. Here, we knocked out one chitinase gene, VFPPC_01099, and two protease genes (VFPPC_10088, VFPPC_06535). We obtained approximately 100 suspected mutants after each transformation. After screening by PCR, the average rate of gene knockout was 13%: 11% (VFPPC_01099), 13% (VFPPC_10088) and 15% (VFPPC_06535). This efficient and convenient technique will accelerate functional genomic studies in P. chlamydosporia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2014.10.001DOI Listing

Publication Analysis

Top Keywords

gene knockout
20
gene
11
knockout system
8
chlamydosporia
8
pochonia chlamydosporia
8
nematode eggs
8
knockout
5
development high-efficiency
4
high-efficiency gene
4
system pochonia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!