The separation performance and retention properties of four sub-2μm underivatised silica materials were evaluated in the hydrophilic interaction chromatography (HILIC) mode. These included an organic/inorganic hybrid silica, conventional silica, narrow particle size distribution silica and a core-shell silica. Van Deemter characterisation was performed using conditions to give high retention factors (k=5.5-6.0) with 10cm columns to limit the contribution of extra-column dispersion. The core-shell 1.6μm bare silica (Cortecs) was shown to be kinetically superior to fully porous particle types. Little column-to-column variation in the reduced b-coefficient was observed for the test analytes as corroborated by arrested elution experiments. However, the reduced b-coefficient was shown to be different between analytes, e.g. cytosine versus nortriptyline. It is speculated that the nature of the retention mechanism (hydrophilic versus ionic retention) and solute physiochemical properties perhaps influence the b-coefficient. Maxwell-Effective Medium Theory (EMT) applied to results for a wider range of solutes indicated that the intra-particle diffusion (Dpart) behaviour for individual compounds is broadly similar irrespective of the particle morphology in HILIC. Finally, the impact of varying buffer concentration for a test mix showed that retention and peak shape varied considerably between different silicas. High efficiency separations can be achieved for hydrophilic and basic solutes using a combination of sub-2μm core shell bare silica particles and appropriate buffer concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2014.10.013DOI Listing

Publication Analysis

Top Keywords

bare silica
12
silica
8
hydrophilic interaction
8
reduced b-coefficient
8
retention
5
comparison kinetic
4
kinetic performance
4
performance retentivity
4
retentivity sub-2
4
sub-2 μm
4

Similar Publications

Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.

View Article and Find Full Text PDF

Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.

View Article and Find Full Text PDF

An analytical method for identifying the chemical constituents in the Chinese herbal combination Jiuwei decoction was established using capillary electrophoresis coupled with quadrupole time-of-flight mass spectrometry. Nine herbs were extracted with a 60:40 (v/v) ethanol/water solution to prepare the Jiuwei decoction. Electrophoretic separation was carried out using a 50 µm i.

View Article and Find Full Text PDF

The achievement of sufficient dispersion of vulcanization accelerators is critical to tailoring superior cross-linked elastomers. Modern recipes rely on multicomponent formulations with silica particles covered by coupling agents. We study the molecular properties of select accelerators in polyisoprene melts and their affinity for functionalized surfaces via extensive all-atom molecular dynamics simulations.

View Article and Find Full Text PDF

Immobilizing calcium-dependent affinity ligand onto iron oxide nanoparticles for mild magnetic mAb separation.

Biotechnol Rep (Amst)

March 2025

Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.

Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (Z) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand Z-cys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!