AI Article Synopsis

  • Amyloid-beta peptides build up in the brain in Alzheimer's disease, causing neuronal death and memory issues.
  • Researchers used mass spectrometry to find 11 new phosphorylation sites on Presenilin-1, the active part of the γ-secretase complex that produces these toxic peptides.
  • Although these new phosphosites were identified, the study found they do not affect γ-secretase activity or maturation, suggesting they are not viable therapeutic targets for decreasing amyloid-beta production in Alzheimer's patients.

Article Abstract

An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ-secretase is responsible for the intramembrane proteolysis of the amyloid-β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ-secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post-translational modification known to modulate the activity of many different enzymes, we used electrospray (LC-MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ-secretase. We identified 11 new single or double phosphosites in two well-defined domains of Presenilin-1 (PS1), the catalytic subunit of the γ-secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ-secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ-secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD. In this study, we identified 11 new phosphosites in Presenilin-1 (PS1), the catalytic subunit of the Alzheimer's γ-secretase complex. By combining a mutagenesis approach with cell-based and cell-free γ-secretase assays, we demonstrate that the new phosphosites do not modulate the maturation and activity of γ-secretase. Individual PS1 phosphosites shall thus not be considered therapeutic targets for reducing cerebral Aβ plaque formation in Alzheimer's Disease. Aβ, amyloid beta.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.12996DOI Listing

Publication Analysis

Top Keywords

γ-secretase activity
12
aβ peptides
12
γ-secretase
10
alzheimer's disease
8
presenilin-1 ps1
8
ps1 catalytic
8
catalytic subunit
8
γ-secretase complex
8
maturation activity
8
activity γ-secretase
8

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Background: It has been suggested that dog walking may protect against falls and mobility problems in later life, but little work to date has examined this.The aim of this study was to assess if regular dog walking was associated with reduced likelihood of falls, fear of falling and mobility problems in a large cohort of community-dwelling older people.

Methods: Participants ≥60 years at Wave 5 of The Irish Longitudinal Study on Ageing were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!