Antimicrobial peptides (AMPs) constitute an indispensable arm of innate immunity against infectious microbes in humans. Induction of endogenous AMPs may become an alternative therapy against infections. Our previous studies have demonstrated phenylbutyrate (PBA) as a novel inducer of the AMPs cathelicidin (encoded by the CAMP gene) and human beta-defensin-1 in the human bronchial epithelial cell line VA10. In this work, we have continued by studying molecular mechanisms of PBA mediated induction of LL-37 expression and associated pathways in the human bronchial epithelial cell line VA10. In this study we demonstrate vitamin D receptor (VDR) as a key transcription factor required for PBA mediated up-regulation of the CAMP gene expression. PBA also increases mRNA expression of the vitamin D3 regulated genes CYP24A1 and CD14. The siRNA knockdown of VDR reduced PBA mediated increase in CAMP, CYP24A1 and CD14 expression. Furthermore, we demonstrate that PBA enhances Toll-Like Receptor 5 ligand flagellin regulated mRNA expression of the inflammatory cytokine TNFα and chemokine CXCL8. PBA also up-regulates the expression of the genes encoding the growth factor cytokines transforming growth factor (TGF) α, TGFβ1 and TGFβ2. Our results indicate that TGFβ type I receptor and epidermal growth factor receptor are involved in PBA mediated CAMP regulation. Finally, we show that co-treatment with PBA and vitamin D3 reduces Pseudomonas aeruginosa growth in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2014.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!