Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nucleosides are biosynthesized from metabolites that are at key nodes of intermediary metabolism. Therefore, (13)C labeling patterns in nucleosides from ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) in suitably designed isotopic tracer studies provide information on metabolic flux distributions of proliferating cells. Here, we present a gas chromatography (GC)-mass spectrometry (MS)-based approach that permits one to exploit that potential. In order to elucidate positional isotopomers of nucleosides from RNA and DNA, we screened the fragmentation spectra of their trimethylsilyl derivatives. We identified the molecular ion moieties retained in the respective fragment ions, focusing particularly on the carbon backbone. Nucleosides fragmented at the N-glycosidic bond provide nucleobase and/or ribose or 2'-deoxyribose fragment ions and fragments thereof. Nucleoside fragments composed of the nucleobase plus some carbons of the ribose ring were also observed. In total, we unequivocally assigned 31 fragments. The mass-isotopic distribution of the assigned fragments provides valuable information for later (13)C metabolic flux analysis as indicated by a labeling experiment applying [1-(13)C]glucose in a yeast culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac503305w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!