Early multi-channel designs in the history of cochlear implant development were based on a vocoder-type processing of frequency channels and presented bands of compressed analog stimulus waveforms simultaneously on multiple tonotopically arranged electrodes. The realization that the direct summation of electrical fields as a result of simultaneous electrode stimulation exacerbates interactions among the stimulation channels and limits cochlear implant outcome led to the breakthrough in the development of cochlear implants, the continuous interleaved (CIS) sampling coding strategy. By interleaving stimulation pulses across electrodes, CIS activates only a single electrode at each point in time, preventing a direct summation of electrical fields and hence the primary component of channel interactions. In this paper we show that a previously presented approach of simultaneous stimulation with channel interaction compensation (CIC) may also ameliorate the deleterious effects of simultaneous channel interaction on speech perception. In an acute study conducted in eleven experienced MED-EL implant users, configurations involving simultaneous stimulation with CIC and doubled pulse phase durations have been investigated. As pairs of electrodes were activated simultaneously and pulse durations were doubled, carrier rates remained the same. Comparison conditions involved both CIS and fine structure (FS) strategies, either with strictly sequential or paired-simultaneous stimulation. Results showed no statistical difference in the perception of sentences in noise and monosyllables for sequential and paired-simultaneous stimulation with doubled phase durations. This suggests that CIC can largely compensate for the effects of simultaneous channel interaction, for both CIS and FS coding strategies. A simultaneous stimulation paradigm has a number of potential advantages over a traditional sequential interleaved design. The flexibility gained when dropping the requirement of interleaving pulses across electrodes may be instrumental in designing coding strategies for a more accurate transmission of stimulus features such as temporal fine structure or interaural time delays to the auditory nerve. Also, longer pulse phase durations may be implemented while maintaining relatively high stimulation pulse rates. Utilizing longer pulse durations may relax requirements on implant compliance and facilitate the design of more energy-efficient implant receivers for a longer battery lifetime or a reduction in implant size. This article is part of a Special Issue entitled .

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2014.11.002DOI Listing

Publication Analysis

Top Keywords

simultaneous stimulation
16
pulse durations
12
cochlear implant
12
channel interaction
12
phase durations
12
stimulation
10
speech perception
8
implant users
8
direct summation
8
summation electrical
8

Similar Publications

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Understanding the reversible transformation between two isomeric states of organic molecules under external stimulation is essential for advancing single-molecule device development. Photochromic diarylethene (DAE) derivatives are promising candidates for single molecular switching elements. This study investigates the single-molecule reactions of the closed-form isomer of a DAE derivative on Cu(111) using scanning tunneling microscopy (STM).

View Article and Find Full Text PDF

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Synchronization of auditory-hand tapping coupling: the effect of aging.

Exp Brain Res

January 2025

Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.

Hand(s)-tapping tasks have been extensively studied in order to characterize the features of sensorimotor synchronization (SMS). These tasks frequently require participants to synchronize their tapping pace to an external, metronome-like sound. The impact of ageing on SMS abilities remains mainly unexplored.

View Article and Find Full Text PDF

Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!