The swine major histocompatibility complex (MHC) genomic region (SLA) is extremely polymorphic comprising high numbers of different alleles, many encoding a distinct MHC class I molecule, which binds and presents endogenous peptides to circulating T cells of the immune system. Upon recognition of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular stomatitis virus, foot-and-mouth-disease virus and others. Here we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly occurring SLA class I alleles in Danish swine. A total of 101 animals from seven different herds were tested, and by low resolution typing the top four most frequent SLA class I alleles were those of the allele groups SLA-3*04XX, SLA-1*08XX, SLA-2*02XX, and SLA-1*07XX, respectively. Customised high resolution primers were used to identify specific alleles within the above mentioned allele groups as well as within the SLA-2*05XX allele group. Our studies also suggest the most common haplotype in Danish pigs to be Lr-4.0 expressing the SLA-1*04XX, SLA-2*04XX, and SLA-3*04XX allele combination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetimm.2014.10.007 | DOI Listing |
Materials (Basel)
December 2024
Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia.
In recent years, 3D printing has emerged as a promising technology in energy storage, particularly for the fabrication of Li-ion battery electrodes. This innovative manufacturing method offers significant material composition and electrode structure flexibility, enabling more complex and efficient designs. While traditional Li-ion battery fabrication methods are well-established, 3D printing opens up new possibilities for enhancing battery performance by allowing for tailored geometries, efficient material usage, and integrating multifunctional components.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
Self-Development Skills Department, King Saud University, Riyadh 11543, Saudi Arabia.
: Sleep stage analysis is considered to be the key factor for understanding and diagnosing various sleep disorders, as it provides insights into sleep quality and overall health. : Traditional methods of sleep stage classification, such as manual scoring and basic machine learning approaches, often suffer from limitations including subjective biases, limited scalability, and inadequate accuracy. Existing deep learning models have improved the accuracy of sleep stage classification but still face challenges such as overfitting, computational inefficiencies, and difficulties in handling imbalanced datasets.
View Article and Find Full Text PDFMicrobes Infect
November 2024
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
BMC Vet Res
October 2024
College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
Biomolecules
August 2024
Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!