Nanoparticles are efficient delivery vehicles for cancer therapy such as paclitaxel (PTX). In this study, we formulated PTX into PLGA polymeric nanoparticles. Vitamin E TPGS was used as an emulsifier to stabilize the nanoparticle formulation. PTX was encapsulated in TPGS-emulsified polymeric nanoparticles (TENPs) by a nanoprecipitation method in ethanol-water system. The resultant PTX-TENPs showed a very uniform particle size (∼100 nm) and high drug encapsulation (>80%). The cytotoxicity of PTX-TENPs was examined in A549 lung cancer cell line. Preferential tumor accumulation of TENPs was observed in the A549 lung cancer xenograft model. Tumor growth was significantly inhibited by intravenous injection of PTX-TENPs. Our results suggested that the modified nanoprecipitation method holds great potential for the fabrication of the PTX loaded polymeric nanoparticles. TPGS can be used in the manufacture of polymeric nanoparticles for the controlled release of PTX and other anti-cancer drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2014.10.007 | DOI Listing |
Pharmaceutics
December 2024
PostGraduate Program in Chemistry, Center for Exact Sciences and Technology (CCET), UFMA-Federal University of Maranhão, São Luís 65080-805, Brazil.
Leishmaniasis, caused by protozoa of the genus , is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from (Syn. ), a plant rich in dimeric flavonoids called brachydins.
View Article and Find Full Text PDFPharmaceutics
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Skłodowskiej St., 41-819 Zabrze, Poland.
: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iasi, Romania.
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia.
This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!