A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Restrained tibial rotation may prevent ACL injury during landing at different flexion angles. | LitMetric

Background: Internal tibial rotation is a risk factor for anterior cruciate ligament (ACL) injury. The effect of restraining tibial rotation (RTR) to prevent ACL injury during single-leg landing is not well understood. We aimed to investigate the effect of impact load and RTR on ACL injury with respect to flexion angle. We hypothesized that RTR could protect the knee from ACL injury compared to free tibial rotation (FTR) regardless of flexion angle and create a safety zone to protect the ACL.

Methods: Thirty porcine specimens were potted in a rig manufactured to replicate single-leg landing maneuvers. A mechanical testing machine was used to apply external forces in the direction of the tibial long axis. A 3D displacement sensor measured anterior tibial translation (ATT). The specimens were divided into 3 groups of 10 specimens and tested at flexion angles of 22 ± 1°, 37 ± 1° and 52 ± 1° (five RTR and five FTR) through a consecutive range of actuator displacements until ACL failure. After dissection, damage to the joint was visually recorded. Two-way ANOVA were utilized in order to compare compressive forces, torques and A/P displacements with respect to flexion angle.

Results: The largest difference between peak axial compressive forces (~3.4 kN) causing ACL injury between RTR and FTR was reported at a flexion angle of 22°. Tibial torques with RTR was in the same range and < 20 Nm at the instance and just before ACL failure, compared to a significant reduction when cartilage/bone damage (no ACL failure) was reported. Isolated ACL injuries were observed in ten of the 15 FTR specimens. Injuries to bone and cartilage were more common with RTR.

Conclusions: RTR increases the threshold for ACL injury by elevating the compressive impact load required at lower flexion angles. These findings may contribute to neuromuscular training programs or brace designs used to avoid excessive internal/external tibial rotation. Caution must be exercised as bone/cartilage damage may result.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.knee.2014.09.012DOI Listing

Publication Analysis

Top Keywords

acl injury
28
tibial rotation
20
flexion angles
12
flexion angle
12
acl failure
12
acl
11
prevent acl
8
single-leg landing
8
impact load
8
respect flexion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!