Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee.

J Chromatogr A

GERSTEL GmbH & Co. KG, Eberhard-Gerstel-Platz 1, Mülheim an der Ruhr, 45473, Germany.

Published: December 2014

A novel multi-volatile method (MVM) using sequential dynamic headspace (DHS) sampling for analysis of aroma compounds in aqueous sample was developed. The MVM consists of three different DHS method parameters sets including choice of the replaceable adsorbent trap. The first DHS sampling at 25 °C using a carbon-based adsorbent trap targets very volatile solutes with high vapor pressure (>20 kPa). The second DHS sampling at 25 °C using the same type of carbon-based adsorbent trap targets volatile solutes with moderate vapor pressure (1-20 kPa). The third DHS sampling using a Tenax TA trap at 80 °C targets solutes with low vapor pressure (<1 kPa) and/or hydrophilic characteristics. After the 3 sequential DHS samplings using the same HS vial, the three traps are sequentially desorbed with thermal desorption in reverse order of the DHS sampling and the desorbed compounds are trapped and concentrated in a programmed temperature vaporizing (PTV) inlet and subsequently analyzed in a single GC-MS run. Recoveries of the 21 test aroma compounds for each DHS sampling and the combined MVM procedure were evaluated as a function of vapor pressure in the range of 0.000088-120 kPa. The MVM provided very good recoveries in the range of 91-111%. The method showed good linearity (r2>0.9910) and high sensitivity (limit of detection: 1.0-7.5 ng mL(-1)) even with MS scan mode. The feasibility and benefit of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed coffee. Ten potent aroma compounds from top-note to base-note (acetaldehyde, 2,3-butanedione, 4-ethyl guaiacol, furaneol, guaiacol, 3-methyl butanal, 2,3-pentanedione, 2,3,5-trimethyl pyrazine, vanillin, and 4-vinyl guaiacol) could be identified together with an additional 72 aroma compounds. Thirty compounds including 9 potent aroma compounds were quantified in the range of 74-4300 ng mL(-1) (RSD<10%, n=5).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2014.10.074DOI Listing

Publication Analysis

Top Keywords

aroma compounds
20
dhs sampling
16
adsorbent trap
12
vapor pressure
12
multi-volatile method
8
sequential dynamic
8
dynamic headspace
8
brewed coffee
8
sampling °c
8
carbon-based adsorbent
8

Similar Publications

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Background: The main application of cork is the production of stoppers for wine bottles. Cork sometimes contains 2,4,6-trichloroanisole, a compound that, at a concentration of ng/L, produces an unpleasant musty odor that destroys the organoleptic properties of wine and results in enormous economic losses for wineries and cork industries. Cork can exhibit a defect known as yellow stain, which is associated with high levels of 2,4,6-trichloroanisole.

View Article and Find Full Text PDF

Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.

View Article and Find Full Text PDF

Volatile markers for unifloral safflower honey: An untargeted and targeted metabolomics analysis.

Food Chem

December 2024

Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:

The volatile markers and aroma properties of unifloral safflower honey in Xinjiang, China were identified for the authentication. An untargeted metabolomics analysis was performed to compare the volatile components in safflower honey with those in four other unifloral honey and the nectar plants of safflower honey through headspace solid-phase microextraction-chromatography-mass spectrometry. Tentative markers, including benzaldehyde, longifolene, and cedrol, were comprehensively screened through variable importance in projection based on orthogonal partial least-squares discrimination analysis, nectar origin volatile components analysis, and odor characteristics analysis.

View Article and Find Full Text PDF

Metagenomic Reveals the Role of Autochthonous in the Fermentation and Flavor Formation of Dry Sausage.

Foods

January 2025

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China.

The effect of SH4, a typical aroma enhancer, on flavor formation of the dry fermented sausage was investigated using gas chromatography-mass spectrometry and metagenomic sequencing. The results showed that inoculation with SH4 promoted volatile compound formation from carbohydrate and amino acid metabolism and accelerated ester synthesis. The enzymes, genes, and microorganisms involved in the formation pathway of volatile compounds based on microbial metabolism were predicted and constructed into a metabolic pathway network.

View Article and Find Full Text PDF

One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of LNFCA11 and B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!