Structural analogues of the natural products magnolol and honokiol as potent allosteric potentiators of GABA(A) receptors.

Bioorg Med Chem

PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland. Electronic address:

Published: December 2014

Biphenylic compounds related to the natural products magnolol and 4'-O-methylhonokiol were synthesized, evaluated and optimized as positive allosteric modulators (PAMs) of GABA(A) receptors. The most efficacious compounds were the magnolol analog 5-ethyl-5'-hexylbiphenyl-2,2'-diol (45) and the honokiol analogs 4'-methoxy-5-propylbiphenyl-2-ol (61), 5-butyl-4'-methoxybiphenyl-2-ol (62) and 5-hexyl-4'-methoxybiphenyl-2-ol (64), which showed a most powerful potentiation of GABA-induced currents (up to 20-fold at a GABA concentration of 3μM). They were found not to interfere with the allosteric sites occupied by known allosteric modulators, such as benzodiazepines and N-arachidonoylglycerol. These new PAMs will be useful as pharmacological tools and may have therapeutic potential for mono-therapy, or in combination, for example, with GABA(A) receptor agonists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2014.10.027DOI Listing

Publication Analysis

Top Keywords

natural products
8
products magnolol
8
gabaa receptors
8
allosteric modulators
8
structural analogues
4
analogues natural
4
magnolol honokiol
4
honokiol potent
4
allosteric
4
potent allosteric
4

Similar Publications

High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds.

View Article and Find Full Text PDF

Secreted and surface proteome and transcriptome of .

Front Parasitol

October 2023

Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.

Introduction: , , and are the most medically important species of fish-borne zoonotic trematodes. is endemic to the river plains of Western Siberia and Eastern Europe, and it is estimated that more than 1.6 million people could be infected with this parasite.

View Article and Find Full Text PDF

Development and Clinical Validation of Model-Informed Precision Dosing for Everolimus in Liver Transplant Recipients.

ACS Pharmacol Transl Sci

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.

Everolimus presents significant dosing challenges due to between- and within-patient pharmacokinetic variabilities. This study aimed to develop and validate a model-informed precision dosing strategy for everolimus in liver transplant recipients. The dosing strategy was initially developed using retrospective data, employing nonlinear mixed-effects modeling.

View Article and Find Full Text PDF

Social contact patterns and their impact on the transmission of respiratory pathogens in rural China.

Infect Dis Model

June 2025

Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, People's Republic of China.

Introduction: Social contact patterns significantly influence the transmission dynamics of respiratory pathogens. Previous surveys have quantified human social contact patterns, yielding heterogeneous results across different locations. However, significant gaps remain in understanding social contact patterns in rural areas of China.

View Article and Find Full Text PDF

Optimized circular RNA vaccines for superior cancer immunotherapy.

Theranostics

January 2025

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!