2-Aminopyrimidin-4(1H)-one was proposed as the novel bioisostere of urea. Bioisosteric replacement of the reported urea series of the CXCR2 antagonists with 2-aminopyrimidin-4(1H)-ones led to the discovery of the novel and potent CXCR2 antagonist 3e. 2-Aminopyrimidin-4(1H)-one derivative 3e demonstrated a good developability profile (reasonable solubility and high permeability) and superior chemical stability especially in simulated gastric fluid (SGF) compared with ureas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2014.10.003 | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Tropomyosin receptor kinase (TRK) has emerged as a promising therapeutic target in cancers driven by NTRK gene fusions. Herein, we report a highly potent TRK inhibitor, C11, developed using bioisosteric replacement and computer-aided drug design (CADD) strategies. Compound C11 demonstrated significant antiproliferative effects against TRK-dependent cell lines (Km-12), and exhibited a dose-dependent inhibition of both colony formation and cell migration.
View Article and Find Full Text PDFEur J Med Chem
December 2024
School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK. Electronic address:
Aryl quinolone derivatives can target the cytochrome bc complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA.
Antimicrobial resistance is a significant cause of mortality globally due to infections, a trend that is expected to continue to rise. As existing treatments fail and new drug discovery slows, the urgency to develop novel antimicrobial therapeutics grows stronger. One promising strategy involves targeting bacterial systems exclusive to pathogens, such as the transcription regulator protein GabR.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!