Background: Imbalances in amount and timing of sleep are harmful to physical and mental health. Therefore, the study of the underlying mechanisms is of great biological importance. Proper timing and amount of sleep are regulated by both the circadian clock and homeostatic sleep drive. However, very little is known about the cellular and molecular mechanisms by which the circadian clock regulates sleep. In this study, we describe a novel role for diuretic hormone 31 (DH31), the fly homolog of the vertebrate neuropeptide calcitonin gene-related peptide, as a circadian wake-promoting signal that awakens the fly in anticipation of dawn.
Results: Analysis of loss-of-function and gain-of-function Drosophila mutants demonstrates that DH31 suppresses sleep late at night. DH31 is expressed by a subset of dorsal circadian clock neurons that also express the receptor for the circadian neuropeptide pigment-dispersing factor (PDF). PDF secreted by the ventral pacemaker subset of circadian clock neurons acts on PDF receptors in the DH31-expressing dorsal clock neurons to increase DH31 secretion before dawn. Activation of PDF receptors in DH31-positive DN1 specifically affects sleep and has no effect on circadian rhythms, thus constituting a dedicated locus for circadian regulation of sleep.
Conclusions: We identified a novel signaling molecule (DH31) as part of a neuropeptide relay mechanism for circadian control of sleep. Our results indicate that outputs of the clock controlling sleep and locomotor rhythms are mediated via distinct neuronal pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255360 | PMC |
http://dx.doi.org/10.1016/j.cub.2014.09.077 | DOI Listing |
New Phytol
January 2025
Instituto de Investigaciones Forestales y Agropecuarias Bariloche, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Bariloche - Consejo Nacional de Investigaciones Científicas y Técnicas (INTA EEA Bariloche-CONICET), San Carlos de Bariloche, Río Negro, R8403DVZ, Argentina.
Plant survival in a warmer world requires the timely adjustment of biological processes to cyclical changes in the new environment. Circadian oscillators have been proposed to contribute to thermal adaptation and plasticity. However, the influence of temperature on circadian clock performance and its impact on plant behaviour in natural ecosystems are not well-understood.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
Purpose: Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood.
Methods: A CJL model was established using C57BL/6J mice.
Nat Metab
January 2025
State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China.
Purpose: This study investigated the impact of hyperglycemia in type 2 diabetes mellitus (T2DM) on the circadian rhythms and function of lacrimal glands (LGs) in contributing to dry eye syndrome. We assessed the effects of hyperglycemia on circadian gene expression, immune cell recruitment, neural activity, and metabolic pathways, and evaluated the effectiveness of insulin in restoring normal LG function.
Methods: Using a T2DM mouse model (db/db mice), circadian transcriptomic changes in LGs were analyzed through RNA sequencing over a 24-hour period.
J Biol Rhythms
January 2025
Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas.
Circadian disruption is pervasive in modern society and associated with increased risk of disease. Chronic jet lag paradigms are popular experimental tools aiming to emulate human circadian disruption experienced during rotating and night shift work. Chronic jet lag induces metabolic phenotypes tied to liver and systemic functions, yet lack of a clear definition for how rhythmic physiology is impaired under these conditions hinders the ability to identify the underlying molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!