The response to infection against Salmonella involves both B and T cell mediated immunity. An effective immunization can activate an adequate immune response capable to control the primary infection and protect against a secondary infection. Mucosal vaccination, by inducing local pathogen-specific immune responses, has the potential to counter mucosally transmitted pathogens at the portal of entry, thereby increasing the efficacy of vaccines. The aim of this work was to explore the efficacy of AFCo1 or AFPL1, as mucosal adjuvants to stimulate cell immunity and memory responses against Vi polysaccharide antigen of Salmonella typhi (PsVi). Mice immunized with 3 intranasal doses exhibited high levels of PsVi-specific IgG (p<0.05), IgG2a and IgG2c subclasses. Also, an amplified recall response after a booster immunization with a plain polysaccharide vaccine was induced. Avidities index were higher in mice immunized with adjuvanted formulations at different chaotropic concentrations. Furthermore, IL-12 and IFN-γ levels in nasally vaccinated mice with both adjuvants were induced. Moreover, priming with 3 doses followed by booster immunization with VaxTyVi(®) resulted in high levels of anti-Vi specific IgG, IgG subclasses and antibody avidity. Long lived plasma cells in bone marrow, memory B cells and long-term memory T cells after booster dose were induced. The combined formulation of Vi polysaccharide with mucosal adjuvants provides an improved immunogenicity, in particular with regard to cellular responses and long lasting cells responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2014.10.037DOI Listing

Publication Analysis

Top Keywords

afco1 afpl1
8
salmonella typhi
8
nasal immunization
4
immunization mice
4
mice afco1
4
afpl1 capsular
4
capsular polysaccharide
4
polysaccharide salmonella
4
typhi induces
4
induces cellular
4

Similar Publications

The response to infection against Salmonella involves both B and T cell mediated immunity. An effective immunization can activate an adequate immune response capable to control the primary infection and protect against a secondary infection. Mucosal vaccination, by inducing local pathogen-specific immune responses, has the potential to counter mucosally transmitted pathogens at the portal of entry, thereby increasing the efficacy of vaccines.

View Article and Find Full Text PDF

The purpose of this study was to investigate the potential of intranasal (IN) immunization with Neisseria meningitides B proteoliposome (AFPL1) and AFPL1-derived cochleate (AFCo1), containing glycoprotein D (gD) of herpes simplex virus type 2 (HSV-2) for induction of protective immunity against genital herpes infection in mice. We could show that IN immunization with both AFPL1 and AFCo1 containing gD induced gD-specific IgG antibody and lymphoproliferative responses. However, IFN-gamma response could only be detected in CD4(+) splenic cells and genital lymph node cells of the AFCo1gD immunized mice upon recall antigen stimulation in vitro.

View Article and Find Full Text PDF

Most pathogens either invade the body or establish infection in mucosal tissues and represent an enormous challenge for vaccine development by the absence of good mucosal adjuvants. A proteoliposome-derived adjuvant from Neisseria meningitidis serogroup B (AFPL1, Adjuvant Finlay Proteoliposome 1) and its derived cochleate form (Co, AFCo1) contain multiple pathogen-associated molecular patterns as immunopotentiators, and can also serve as delivery systems to elicit a Th1-type immune response. The present studies demonstrate the ability of AFPL1and AFCo1 to induce mucosal and systemic immune responses by different mucosal immunizations routes and significant adjuvant activity for antibody responses of both structures: a microparticle and a nanoparticle with a heterologous antigen.

View Article and Find Full Text PDF

New vaccines require potent adjuvants like AFPL1 and AFCo1.

Scand J Immunol

September 2007

Immunology Department, Finlay Institute, Havana City, Cuba.

Neisseria meningitidis B proteoliposome (AFPL1 when used as adjuvant) and its derivative-Cochleate (AFCo1) contain immunopotentiating and immunomodulating properties and delivery system capacities required for a good adjuvant. Additionally, they contain meningococcal protective antigens and permit packaging of other antigens and pathogen-associated molecular patterns (PAMP). Consequently, we hypothesized that they would function as good vaccine adjuvants for their own antigens and also for non-related antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!