Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompasses the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255140PMC
http://dx.doi.org/10.1016/j.cub.2014.10.029DOI Listing

Publication Analysis

Top Keywords

polo kinase
12
yeast polo
8
kinase cdc5
8
regulating nuclear
8
nuclear morphology
8
chromosome segregation
8
budding yeast
8
mitotic flare
8
adjacent nucleolus
8
cdc5
5

Similar Publications

To ensure the correct euploid state of embryos, it is essential that vertebrate oocytes await fertilization arrested at metaphase of meiosis II. This MII arrest is mediated by XErp1/Emi2, which inhibits the ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome). Cyclin B3 in complex with Cdk1 (cyclin-dependent kinase 1) is essential to prevent an untimely arrest of vertebrate oocytes in meiosis I by targeting XErp1/Emi2 for degradation.

View Article and Find Full Text PDF

Increased α-synuclein phosphorylation and oligomerization and altered enzymes in plasma of patients with Parkinson's disease.

Neuroscience

December 2024

Department of Neurobiology and National Clinical Research Center for Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China. Electronic address:

The brain of patients with Parkinson's disease (PD) was characterized by increased phosphorylation and oligomerization of α-synuclein (α-syn) and altered activity of enzymes regulating α-syn phosphorylation and oligomerization. Whether increased α-syn phosphorylation and oligomerization as well as related enzyme changes can be detected in the plasma of PD patients remains unclear. Here, we showed that human α-syn proteins incubated in PD plasma formed more oligomerized α-syn (O-α-syn) and phosphorylated α-syn (pS-α-syn) than those in healthy control (HC) plasma.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition.

Sci Rep

December 2024

Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.

The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.

View Article and Find Full Text PDF

PP2A-Tws dephosphorylates Map205, is required for Polo localization to microtubules and promotes cytokinesis in Drosophila.

Cell Div

December 2024

Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada.

Background: Mitosis and cytokinesis are regulated by reversible phosphorylation events controlled by kinases and phosphatases. Drosophila Polo kinase, like its human ortholog PLK1, plays several roles in this process. Multiple mechanisms contribute to regulate Polo/PLK1 activity, localization and interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!