Brominated flame-retardants (BFRs) are used in industrial products to reduce the risk of fire. However, their continuous release into the environment is a concern as they are often persistent, bioaccumulating and toxic. Information on the impact these compounds have on human health and wildlife is limited and only a few of them have been identified to disrupt hormone receptor functions. In the present study we used in silico modeling to determine the interactions of selected BFRs with the human androgen receptor (AR). Three compounds were found to dock into the ligand-binding domain of the human AR and these were further tested using in vitro analysis. Allyl 2,4,6-tribromophenyl ether (ATE), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) were observed to act as AR antagonists. These BFRs have recently been detected in the environment, in house dust and in aquatic animals. The compounds have been detected at high concentrations in both blubber and brain of seals and we therefore also assessed their impact on the expression of L-type amino acid transporter system (LAT) genes, that are needed for amino acid uptake across the blood-brain barrier, as disruption of LAT gene function has been implicated in several brain disorders. The three BFRs down-regulated the expression of AR target genes that encode for prostate specific antigen (PSA), 5α-reductases and β-microseminoprotein. The potency of PSA inhibition was of the same magnitude as the common prostate cancer drugs, demonstrating that these compounds are strong AR antagonists. Western blot analysis of AR protein showed that ATE, BATE and DPTE decreased the 5α-dihydrotestosterone-induced AR protein levels, further confirming that these BFRs act as AR antagonists. The transcription of the LAT genes was altered by the three BFRs, indicating an effect on amino-acid uptake across cellular membranes and blood-brain barrier. This study demonstrated that ATE, BATE and DPTE are potent AR antagonists and the alterations in LAT gene transcription suggest that these compounds can affect neuronal functions and should be considered as potential neurotoxic and endocrine disrupting compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2014.09.002DOI Listing

Publication Analysis

Top Keywords

androgen receptor
8
246-tribromophenyl ether
8
amino acid
8
lat genes
8
blood-brain barrier
8
lat gene
8
three bfrs
8
ate bate
8
bate dpte
8
bfrs
6

Similar Publications

Rationale: LGD-4033, a selective androgen receptor modulator (SARM), is recognized for promoting muscle growth and enhancing athletic performance. Its potent anabolic effects have led to its prohibition in both human and animal sports. Although initial in vitro studies have offered insights into its metabolism, an in-depth in vivo analysis is necessary to fully understand its metabolic pathways.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a complex endocrine-metabolic disorder, and multiple factors contribute to its pathophysiology. The current study assessed a PCOS-like animal model induced by consuming a high-fat sugar (HFHS) diet and compared the treatment outcome of mitochondrial-targeted antioxidants versus heat therapy. Sixty rats were divided into the following study groups: three control groups (negative and positive for the treatments used), HFHS, hot tub therapy (HTT) treatment, and MitoQ10 treatment (500 µmol/L MitoQ10 in clean drinking water daily, from week fourteen till week twenty-two of the study).

View Article and Find Full Text PDF

Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling.

View Article and Find Full Text PDF

The functional activation of the androgen receptor (AR) and its interplay with the aberrant Hh/Gli cascade are pivotal in the progression of castration-resistant prostate cancer (CRPC) and resistance to AR-targeted therapies. Our study unveiled a novel role of the truncated form of Gli (t-Gli3) in advancing CRPC. Investigation into Gli3 regulation revealed a Smo-independent mechanism for its activation.

View Article and Find Full Text PDF

Estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancers have different genomic architecture and show large-scale gene expression differences consistent with different cellular origins, which is reflected in the luminal (i.e., ER+) versus basal-like (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!