Silk fibroin (SF)/nano-hydroxyapatite (n-HA) composites are potential biomaterials for bone defect repair. Up to now, the biological evaluation studies of SF/n-HA composites have primarily concentrated on their biocompatibility at cell level such as cell viability and proliferation and tissue level such as material absorption and new bone formation. In this work, SF/n-HA composites were fabricated using a simplified coprecipitation methods and were deposited onto Ti alloy substrates. Then the cell adhesion ability of SF/n-HA composites was observed by SEM and cell proliferation ability of SF/n-HA composites was determined by MTT assay. The ALP activity, BGP contents, and Col I contents of MG-63 human osteosarcoma cells on SF/n-HA composites were quantitatively analyzed. HA nanocrystals were used as controls. These experiments showed that SF/n-HA composites had better cell adhesion and osteogenic differentiation abilities than n-HA materials. This work provides quantitative data to analyze the effect of SF/n-HA composites on cell osteogenic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2014.10.009DOI Listing

Publication Analysis

Top Keywords

sf/n-ha composites
28
osteogenic differentiation
12
composites
9
mg-63 human
8
human osteosarcoma
8
osteosarcoma cells
8
cell adhesion
8
ability sf/n-ha
8
sf/n-ha
7
cell
6

Similar Publications

Design of artificial corneal scaffolds substitute is crucial for replacement of impaired cornea. In this paper, porous polyvinyl alcohol/silk fibroin/nano-hydroxyapatite (PVA/SF/n-HA) composite hydrogel was prepared via the genipin (GP) cross-linking, the pore diameter of the hydrogel ranged from 8.138 nm and 90.

View Article and Find Full Text PDF

In this current study, a novel multilayer porous composite scaffold was fabricated with chitosan (CS), silk fibrin (SF) and nano-hydroxyapatite (n-HA). Scanning electron microscope was utilized to detect the characteristics of the composed scaffold. Rat bone marrow stromal cells (rBMSC) were loaded onto the CS/SF/n-HA scaffold and cultured in a bioreactor under an on-off dynamic compression (10% compressive strain, 0.

View Article and Find Full Text PDF

Silk fibroin (SF)/nano-hydroxyapatite (n-HA) composites are potential biomaterials for bone defect repair. Up to now, the biological evaluation studies of SF/n-HA composites have primarily concentrated on their biocompatibility at cell level such as cell viability and proliferation and tissue level such as material absorption and new bone formation. In this work, SF/n-HA composites were fabricated using a simplified coprecipitation methods and were deposited onto Ti alloy substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!