A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design, synthesis and anticancer evaluation of tetrahydro-β-carboline-hydantoin hybrids. | LitMetric

A series of new tetrahydro-β-carboline-hydantoin hybrids have been designed and synthesized based on the structure of the known Eg5 inhibitor HR22C16. These compounds have been evaluated for their anticancer activity against lung (A549), cervical (ME180, HeLa), prostate (PC-3) and breast (MCF-7) cancer cell lines by MTT assay. These hybrids have displayed significant in vitro cytotoxicity in comparison to etoposide against PC-3, A549, and MCF-7 cell lines. The hybrids 3a, 3b, 3c, 3e, 3f, 3g, 4b, 4c, 4e and 4f appear to be more effective against the PC-3 cell line, among which compound 4b displayed the highest cytotoxicity (6.08 ± 0.2, IC₅₀ μM). Based on these results, an attempt was made to rationalize their mechanism of action through cell cycle analysis studies. The flow-cytometric analysis of compound 4b in PC-3 cells indicated a G2/M cell cycle arrest. Molecular docking studies substantiate that these compounds indeed bind to the allosteric site of Eg5 formed from Glu116, Gly117, Glu118, Trp127, Ala133, Ile136, Pro137, Tyr211, Leu214, and Glu215 residues with the most potent compound 4b showing the most favorable interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2014.10.038DOI Listing

Publication Analysis

Top Keywords

tetrahydro-β-carboline-hydantoin hybrids
8
cell lines
8
cell cycle
8
cell
5
design synthesis
4
synthesis anticancer
4
anticancer evaluation
4
evaluation tetrahydro-β-carboline-hydantoin
4
hybrids
4
hybrids series
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!