Systems-level metabolic network reconstructions and the derived constraint-based (CB) mathematical models are efficient tools to explore bacterial metabolism. Approximately one-fourth of the Mycobacterium tuberculosis (Mtb) genome contains genes that encode proteins directly involved in its metabolism. These represent potential drug targets that can be systematically probed with CB models through the prediction of genes essential (or the combination thereof) for the pathogen to grow. However, gene essentiality depends on the growth conditions and, so far, no in vitro model precisely mimics the host at the different stages of mycobacterial infection, limiting model predictions. These limitations can be circumvented by combining expression data from in vivo samples with a validated CB model, creating an accurate description of pathogen metabolism in the host. To this end, we present here a thoroughly curated and extended genome-scale CB metabolic model of Mtb quantitatively validated using 13C measurements. We describe some of the efforts made in integrating CB models and high-throughput data to generate condition specific models, and we will discuss challenges ahead. This knowledge and the framework herein presented will enable to identify potential new drug targets, and will foster the development of optimal therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.smim.2014.09.013 | DOI Listing |
J Pharm Health Care Sci
January 2025
Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia.
Background: Antithrombotic medications are essential for the management of abnormal clot formation. However, their availability, pricing, and affordability in Ethiopia, particularly in Addis Ababa, have not been comprehensively studied.
Methods: A cross-sectional study was conducted in Addis Ababa, Ethiopia to assess the availability, pricing, and affordability of essential antithrombotic medicines.
Stem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China.
Objective: The occurrence of hypofibrinogenemia after tocilizumab treatment has attracted increasing attention, which may cause bleeding and even life-threatening. This study aims to explore the risk factors for tocilizumab-induced hypofibrinogenemia (T-HFIB) and construct a risk prediction model.
Methods: A total of 221 inpatients that received tocilizumab from 2015 to 2023 were retrospectively collected and divided into T-HFIB group or control group.
Biomark Res
January 2025
Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan.
Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!