Stoichiometry and assembly of mTOR complexes revealed by single-molecule pulldown.

Proc Natl Acad Sci U S A

Center for Biophysics and Computational Biology, Institute for Genomic Biology, Department of Physics, and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Published: December 2014

The mammalian target of rapamycin (mTOR) kinase is a master regulator of cellular, developmental, and metabolic processes. Deregulation of mTOR signaling is implicated in numerous human diseases including cancer and diabetes. mTOR functions as part of either of the two multisubunit complexes, mTORC1 and mTORC2, but molecular details about the assembly and oligomerization of mTORCs are currently lacking. We use the single-molecule pulldown (SiMPull) assay that combines principles of conventional pulldown assays with single-molecule fluorescence microscopy to investigate the stoichiometry and assembly of mTORCs. After validating our approach with mTORC1, confirming a dimeric assembly as previously reported, we show that all major components of mTORC2 exist in two copies per complex, indicating that mTORC2 assembles as a homodimer. Interestingly, each mTORC component, when free from the complexes, is present as a monomer and no single subunit serves as the dimerizing component. Instead, our data suggest that dimerization of mTORCs is the result of multiple subunits forming a composite surface. SiMPull also allowed us to distinguish complex disassembly from stoichiometry changes. Physiological conditions that abrogate mTOR signaling such as nutrient deprivation or energy stress did not alter the stoichiometry of mTORCs. On the other hand, rapamycin treatment leads to transient appearance of monomeric mTORC1 before complete disruption of the mTOR-raptor interaction, whereas mTORC2 stoichiometry is unaffected. These insights into assembly of mTORCs may guide future mechanistic studies and exploration of therapeutic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273350PMC
http://dx.doi.org/10.1073/pnas.1419425111DOI Listing

Publication Analysis

Top Keywords

stoichiometry assembly
8
single-molecule pulldown
8
mtor signaling
8
assembly mtorcs
8
stoichiometry
5
mtor
5
mtorcs
5
assembly mtor
4
mtor complexes
4
complexes revealed
4

Similar Publications

Dynein-1 is a microtubule motor responsible for the transport of cytoplasmic cargoes. Activation of motility requires it first overcome an autoinhibited state prior to its assembly with dynactin and a cargo adaptor. Studies suggest that Lis1 may relieve dynein's autoinhibited state.

View Article and Find Full Text PDF

Molecular basis for the assembly of the dynein transport machinery on microtubules.

bioRxiv

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.

Cytoplasmic dynein-1, a microtubule-based motor protein, requires dynactin and an adaptor to form the processive dynein-dynactin-adaptor (DDA) complex. The role of microtubules in DDA assembly has been elusive. Here, we reveal detailed structural insights into microtubule-mediated DDA assembly using cryo-electron microscopy.

View Article and Find Full Text PDF

Catalytic Assembly of Peptides Mediated by Complex Coacervates.

ACS Nano

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.

View Article and Find Full Text PDF

WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Variance in optical mesoscopic probes limits applications, especially as smaller probes show greater relative variance.
  • Specific viral protein cages, like the murine polyoma virus, can assemble efficiently and accurately, minimizing statistical fluctuations due to quality control.
  • An approach leveraging this assembly results in multichromophore particles that produce brighter, more consistent fluorescence than existing fluorescent nanosphere probes, validated by mass spectrometry and fluorescence microscopy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!