Provision of nitrogen as ammonium rather than nitrate increases silicon uptake in sugarcane.

AoB Plants

South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe 4300, South Africa School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa.

Published: December 2014

Silicon (Si) is important in mitigating abiotic and biotic plant stresses, yet many agricultural soils, such as those of the rainfed production areas of the South African sugar industry, are deficient in plant-available Si, making Si supplementation necessary. However, Si uptake by sugarcane (Saccharum spp. hybrids) is limited even where silicate amendments improve soil Si status. Rhizosphere pH, which can affect Si uptake, can be manipulated using different N-form fertilizers. We tested whether (i) fertilization with [Formula: see text] (rhizosphere acidification) increased Si uptake compared with [Formula: see text] (rhizosphere alkalinization); and (ii) uptake differed between an N-efficient, more acid-tolerant cultivar (N12) and an N-inefficient, less acid-tolerant cultivar (N14). Two pot trials with low-Si soil were fertilized with calcium silicate (Ca2SiO4) slag, plus N from ammonium sulphate [(NH4)2SO4], ammonium thiosulphate [(NH4)2S2O3] and calcium nitrate [Ca(NO3)2] (Trial 1) or N from (NH4)2S2O3 and Ca(NO3)2 only (Trial 2). Trial 2 included cultivars N12 and N14. Nitrate treatments significantly increased soil pH and soil Si compared with [Formula: see text] However, [Formula: see text] treatments significantly increased leaf and stalk Si content compared with [Formula: see text] reflected in a significant negative relationship between soil pH and leaf Si. Acid-extracted soil Si was negatively related to leaf and stalk Si, likely due to adsorption of silicic acid to soil surfaces under higher pH of the [Formula: see text] treatment and its reduced availability for plant uptake. We conclude that [Formula: see text] increased Si uptake into leaf and stalk, and propose that reduced rhizosphere pH solubilized Si from Ca2SiO4 and increased silicic acid availability for plant uptake. By contrast, [Formula: see text] may have reduced Si uptake due to adsorption of Si to soil surfaces at higher pH. Our results indicate that ammoniacal fertilizers, such as (NH4)2SO4 and urea, have potential for promoting dissolution of applied Ca2SiO4 and subsequent uptake of Si by sugarcane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511226PMC
http://dx.doi.org/10.1093/aobpla/plu080DOI Listing

Publication Analysis

Top Keywords

[formula text]
32
uptake sugarcane
12
compared [formula
12
leaf stalk
12
uptake
10
soil
8
[formula
8
text]
8
text] rhizosphere
8
increased uptake
8

Similar Publications

Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.

View Article and Find Full Text PDF

(PN) root is a renowned nutritional supplement, health food additive, and traditional medicine that maintains homeostasis within the human microcirculatory system. Notoginsenoside R1 (NG-R1), an active compound derived from PN root, has been reported to possess various pharmacological activities, including anti-inflammatory, antioxidant, anticancer, antimicrobial, and angiogenic effects. However, NG-R1's pharmacokinetic properties and pharmacological activities have not been systematically elucidated.

View Article and Find Full Text PDF

The Pharmacology and Toxicology of Ginkgolic Acids: Secondary Metabolites from .

Am J Chin Med

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.

Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).

View Article and Find Full Text PDF

Advances in Pharmacological Research on Icaritin: A Comprehensive Review.

Am J Chin Med

January 2025

Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.

has been widely used in traditional Chinese medicine for several thousands of years. This plant is known for tonifying kidney Yang, strengthening muscles and bones, and dispelling wind and dampness. It is worth noting that icaritin, a prenylated flavonoid isolated from , has received increasing attention in recent years due to its wide range of pharmacological activities.

View Article and Find Full Text PDF

Tensor networks enable the calculation of turbulence probability distributions.

Sci Adv

January 2025

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

Predicting the dynamics of turbulent fluids has been an elusive goal for centuries. Even with modern computers, anything beyond the simplest turbulent flows is too chaotic and multiscaled to be directly simulatable. An alternative is to treat turbulence probabilistically, viewing flow properties as random variables distributed according to joint probability density functions (PDFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!