In isolated rat lung perfused with a physiological saline solution (5.5mM glucose), complex I inhibitors decrease lung tissue ATP and increase endothelial permeability (Kf), effects that are overcome using an amphipathic quinone (CoQ1) [Free Radic. Biol. Med.65:1455-1463; 2013]. To address the microvascular endothelial contribution to these intact lung responses, rat pulmonary microvascular endothelial cells in culture (PMVEC) were treated with the complex I inhibitor rotenone and ATP levels and cell monolayer permeability (PS) were measured. There were no detectable effects on ATP or permeability in experimental medium that, like the lung perfusate, contained 5.5mM glucose. To unmask a potential mitochondrial contribution, the glucose concentration was lowered to 0.2mM. Under these conditions, rotenone decreased ATP from 18.4±1.6 (mean±SEM) to 4.6±0.8nmol/mg protein, depolarized the mitochondrial membrane potential (Δψm) from -129.0±3.7 (mean±SEM) to -92.8±5.5mV, and decreased O2 consumption from 2.0±0.1 (mean±SEM) to 0.3±0.1nmol/min/mg protein. Rotenone also increased PMVEC monolayer permeability (reported as PS in nl/min) to FITC-dextran (~40kDa) continually over a 6 h time course. When CoQ1 was present with rotenone, normal ATP (17.4±1.4nmol/mg protein), O2 consumption (1.5±0.1nmol/min/mg protein), Δψm (-125.2±3.3mV), and permeability (PS) were maintained. Protective effects of CoQ1 on rotenone-induced changes in ATP, O2 consumption rate, Δψm, and permeability were blocked by dicumarol or antimycin A, inhibitors of the quinone-mediated cytosol-mitochondria electron shuttle [Free Radic. Biol. Med.65:1455-1463; 2013]. Key rotenone effects without and with CoQ1 were qualitatively reproduced using the alternative complex I inhibitor, piericidin A. We conclude that, as in the intact lung, PMVEC ATP supply is linked to the permeability response to complex I inhibitors. In contrast to the intact lung, the association in PMVEC was revealed only after decreasing the glucose concentration in the experimental medium from 5.5 to 0.2mM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.030 | DOI Listing |
Heliyon
February 2024
Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.
View Article and Find Full Text PDFOncol Rep
March 2025
School of Medicine, Zibo Vocational Institute, Zibo, Shandong 255300, P.R. China.
Triple‑negative breast cancer (TNBC), a highly malignant breast cancer subtype with a pronounced metastatic propensity, forms the focus of the present investigation. MDA‑MB‑231, a prevalently utilized TNBC cell line in cancer research, was employed. In accordance with the tumour angiogenesis theory, cancer cells are capable of instigating angiogenesis and the formation of a novel vascular system within the tumour microenvironment, which subsequently sustains malignant proliferation and metastasis.
View Article and Find Full Text PDFHypertens Res
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
Contemporary anticancer drugs are often accompanied by varying degrees of cardiovascular toxicity, with hypertension emerging as one of the most prevalent side effects, particularly linked to inhibitors of vascular endothelial growth factor receptor (VEGFR) and tyrosine kinase inhibitors (TKIs). Hypertension induced by cancer therapies contributes to increased cardiovascular mortality in cancer patients and survivors. Given the shared common risk factors and overlapping pathophysiological mechanisms, hypertension is also a prevalent comorbidity in this patient population.
View Article and Find Full Text PDFCurr Diabetes Rev
January 2025
Institut National de Nutrition et de Technologie Alimentaire de Tunis, service D, Tunisia.
Introduction: Type 2 diabetes (T2D) is a prevalent metabolic disorder linked to chronic inflammation and endothelial dysfunction, which contributes to the development of microvascular complications (MVCs) such as diabetic retinopathy (DR) and diabetic neuropathy (DN). Genetic factors, including variations in the ABO gene, may influence these complications. This study aimed to investigate the association between the ABO rs2073823 polymorphism and the risk of MVCs in patients with T2D, as well as its impact on inflammatory biomarkers, endothelial markers, and lipid profiles.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Physical Activity, Health and Rehabilitation Thematic Research Group, School of Psychology, Sport & Health Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK.
Type 2 diabetes (T2D) is a metabolic disease associated with cardiovascular dysfunction. The myocardium preferentially uses ketones over free fatty acids as a more energy efficient substrate. The primary aim was to assess the effects of ketone monoester (K) ingestion on cardiac output index ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!