We have previously reported that treatment of newborn mice with KRN633, a vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor, delayed retinal vascularization leading to abnormal retinal vascular growth and patterns. To determine whether similar abnormalities are observed in newborn mice treated with other VEGF receptor tyrosine kinase inhibitors, we administered axitinib to mice on the day of birth and on the following day. When compared with control pups, a significant delay in retinal vascularization was observed in pups treated with axitinib (5 mg/kg). Axitinib-treated pups had a very dense capillary network on postnatal day (P) 6 and fewer central arteries and veins on P8 and P12. Central veins, but not arteries, were significantly enlarged on P8. These abnormalities were similar to those observed in KRN633-treated pups and probably represent a common phenotype induced by short-term treatment with VEGF receptor inhibitors in newborn mice. Therefore, mice treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms of retinal vascular formation and patterning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b14-00540 | DOI Listing |
Biol Sex Differ
January 2025
Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada.
As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China.
Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China.
Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Background: Night shift work during pregnancy has been associated with differential DNA methylation in placental tissue, but no studies have explored this association in cord blood. We aimed to examine associations of maternal night shift work with cord blood DNA methylation.
Methods: A total of 4487 mother-newborn pairs from 7 studies were included.
Sci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!