Neolignan inhibitors of antigen-induced degranulation in RBL-2H3 cells from the needles of Pinus thunbergii.

Fitoterapia

Gyeonggi Institute of Science & Technology Promotion Natural Products Research Institute, Suwon 443-766, Republic of Korea; College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea. Electronic address:

Published: December 2014

The ethanolic extract of the needles of Pinus thunbergii was found to suppress antigen mediated degranulation of rat basophilic leukemia (RBL-2H3) cells. A new neolignan glycoside, named pinusthunbergiside A (1), as well as six known neolignan glycosides (2-7) were isolated from the ethanolic extract using bioassay-guided fractionation. Their structures were elucidated by a combination of 1D and 2D NMR, HRESI-MS, and circular dichroism (CD) data. Compounds 2-7 were found for the first time in this plant. The inhibitory effects of isolated constituents on the release of β-hexosaminidase from RBL-2H3 cells were examined, and compounds 2, 3, 5, and 6 were found to show the inhibitory activity with IC₅₀ values ranging between 52.3 and 75.3 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2014.10.015DOI Listing

Publication Analysis

Top Keywords

rbl-2h3 cells
12
needles pinus
8
pinus thunbergii
8
ethanolic extract
8
neolignan inhibitors
4
inhibitors antigen-induced
4
antigen-induced degranulation
4
degranulation rbl-2h3
4
cells needles
4
thunbergii ethanolic
4

Similar Publications

Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.

View Article and Find Full Text PDF

Dissecting SNARE-Mediated Exocytosis in RBL-2H3 Mast Cells.

Methods Mol Biol

January 2025

Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.

SNARE-dependent mast cell (MC) exocytosis causes the release of a wide variety of mediators with important physiological/pathological consequences. Unlike synaptic transmission in the brain, which relies primarily on one set of exocytic SNAREs (i.e.

View Article and Find Full Text PDF

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

March 2025

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel.

Cell Biochem Biophys

December 2024

School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.

Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line.

View Article and Find Full Text PDF

The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction.

J Hazard Mater

November 2024

Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea. Electronic address:

The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!