Large multi-molecular complexes like the kinetochore are lacking of suitable methods to determine their spatial structure. Here, we use and evaluate a novel modeling approach that combines rule-bases reaction network models with spatial molecular geometries. In particular, we introduce a method that allows to study in silico the influence of single interactions (e.g. bonds) on the spatial organization of large multi-molecular complexes and apply this method to an extended model of the human inner-kinetochore. Our computational analysis method encompasses determination of bond frequency, geometrical distances, statistical moments, and inter-dependencies between bonds using mutual information. For the analysis we have extend our previously reported human inner-kinetochore model by adding 13 new protein interactions and three protein geometry details. The model is validated by comparing the results of in silico with reported in vitro single protein deletion experiments. Our studies revealed that most simulations mimic the in vitro behavior of the kinetochore complex as expected. To identify the most important bonds in this model, we have created 39 mutants in silico by selectively disabling single protein interactions. In a total of 11,800 simulation runs we have compared the resulting structures to the wild-type. In particular, this allowed us to identify the interaction Cenp-W-H3 and Cenp-S-Cenp-X as having the strongest influence on the inner-kinetochore's structure. We conclude that our approach can become a useful tool for the in silico dynamical study of large, multi-molecular complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2014.11.004 | DOI Listing |
EMBO J
June 2024
Life Sciences Institute, State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China.
The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset.
View Article and Find Full Text PDFNat Struct Mol Biol
June 2024
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
Faithful chromosome segregation requires robust, load-bearing attachments of chromosomes to the mitotic spindle, a function accomplished by large macromolecular complexes termed kinetochores. In most eukaryotes, the constitutive centromere-associated network (CCAN) complex of the inner kinetochore recruits to centromeres the ten-subunit outer kinetochore KMN network that comprises the KNL1C, MIS12C and NDC80C complexes. The KMN network directly attaches CCAN to microtubules through MIS12C and NDC80C.
View Article and Find Full Text PDFNat Cell Biol
January 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells.
View Article and Find Full Text PDFJ Cell Biochem
November 2023
Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, India.
Kinetochores are multi-protein assemblies present at the centromere of the human chromosome and play a crucial role in cellular mitosis. The CENP-T and CENP-W chains form a heterodimer, which is an integral part of the inner kinetochore, interacting with the linker DNA on one side and the outer kinetochore on the other. Additionally, the CENP-T-W dimer interacts with other regulatory proteins involved in forming inner kinetochores.
View Article and Find Full Text PDFTrends Biochem Sci
October 2023
Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey; Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria. Electronic address:
CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!