A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication and evaluation of celecoxib microparticle surface modified by hydrophilic cellulose and surfactant. | LitMetric

This study was undertaken to improve the solubility and dissolution of a poorly water-soluble drug, celecoxib, by surface modification with a hydrophilic polymer and a surfactant by using a spray-drying technique. Based on the preliminary solubility tests, hydroxypropylmethyl cellulose (HPMC) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the polymer and the surfactant, respectively. A novel surface-modified celecoxib microparticle was successfully fabricated using a spray-drying process with water, HPMC, and TPGS, and without the use of an organic solvent. The physicochemical properties of the surface-modified celecoxib microparticle were characterized using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), a particle size analyzer, and contact angle determination. The formulation with drug/HPMC/TPGS at the weight ratio of 1:0.5:1.5 was determined to be the most effective composition in the preparation of the surface-modified celecoxib microparticle, based on the results of wettability, solubility, and dissolution studies. We found that the surface modification of microparticles with HPMC and TPGS can be an effective formulation strategy for new dosage forms of poorly water-soluble active pharmaceutical ingredients (APIs) to provide higher solubility and dissolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.09.063DOI Listing

Publication Analysis

Top Keywords

celecoxib microparticle
16
solubility dissolution
12
surface-modified celecoxib
12
surface modification
8
polymer surfactant
8
hpmc tpgs
8
celecoxib
5
fabrication evaluation
4
evaluation celecoxib
4
microparticle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!