Gastroprotective effects of goniothalamin against ethanol and indomethacin-induced gastric lesions in rats: Role of prostaglandins, nitric oxide and sulfhydryl compounds.

Chem Biol Interact

Chemical, Biological and Agricultural Pluridisciplinary Research Center, CPQBA, University of Campinas, Rua Alexandre Cazelatto, 999, Vila Betel, Paulínia, SP 13148-218, Brazil; Department of Pharmacology, Anaesthesiology and Therapeutics, Faculty of Dentistry, University of Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP 13081-970, Brazil.

Published: December 2014

Goniothalamin (GTN), a styryl-lactone, is a secondary metabolite naturally found in its enantiomeric form (R) in plants of the genus Goniothalamus (Annonaceae). The antiproliferative activity against human tumor cell lines reported in several studies suggest that the α,β-unsaturated δ-lactone moiety emerges as a key Michael acceptor for cysteine residues or other nucleophilic biological molecules. Our group reported on the in vivo activity of (R)- and (S)-GTN as well as its racemic form (rac-GTN) in both Ehrlich solid tumor and carrageenan-induced paw edema in mice, without side effects in the effective doses. Despite the rich body of data on the in vitro GTN biological activity, much less is known about its in vivo pharmacological action. Herein we describe the gastroprotective activity of rac-GTN on chemical-induced gastric ulcers models in rats. GTN has a potent gastroprotective effect on ethanol-induced ulcers (effective dose50=18mg/kg) and this activity is dependent on sulfhydryl compounds and prostaglandins generation, but independent of nitric oxide (NO), gastric secretion and mucus production. We hypothesize that goniothalamin may act as a mild irritant, inducing the production of sulfhydryl compounds and prostaglandins, in a process known as adaptive cytoprotection. This hypothesis is supported by the fact that Michael acceptors are the most potent inducers of antioxidant response (as activation of Nrf2 pathway) through generation of mild oxidative stress and that gastroprotective activity of goniothalamin is inhibited after pre-treatment with NEM (N-ethylmaleimide) and NSAID (non-steroidal anti-inflammatory drugs), highlighting the importance of sulfhydryl compounds and prostaglandins on GTN activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2014.10.025DOI Listing

Publication Analysis

Top Keywords

sulfhydryl compounds
16
compounds prostaglandins
12
nitric oxide
8
gastroprotective activity
8
activity
7
gastroprotective
4
gastroprotective effects
4
goniothalamin
4
effects goniothalamin
4
goniothalamin ethanol
4

Similar Publications

Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates.

Nat Commun

January 2025

Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.

Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.

View Article and Find Full Text PDF

FITA-Containing 2,4-Dinitrophenyl Alkylthioether-Based Probe for Detection and Imaging of GSH.

Sensors (Basel)

December 2024

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.

Glutathione (GSH) plays a crucial role in various physiological processes and its imbalances are closely related to various pathological conditions. Probes for detection and imaging of GSH are not only useful for understanding GSH chemical biology but are also important for exploring potential theranostic agents. Herein, we report a fast intramolecular thiol-activated arylselenoamides ()-based fluorescent probe using 2,4-dinitrophenyl alkylthioether as a sulfydryl-selective receptor for the first time.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

Pt@ZnCoO Microspheres as Peroxidase Mimics: Enhanced Catalytic Activity and Application for L-Cysteine Detection.

Molecules

January 2025

Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.

Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!