Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2014.10.005DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
24
oxidative stress
12
sauchinone
8
hepatic stellate
8
effects sauchinone
8
sauchinone inhibited
8
hscs activation
8
liver
6
fibrosis
6
hscs
6

Similar Publications

Aim: Sarcopenic obesity (SO) is associated with adverse outcomes in diseased patients. This study aimed to examine the prevalence and risks associated with SO, with a focus on the impact of SO on cardiovascular risk in patients with MASLD.

Materials And Methods: In this cross-sectional study, patients with MASLD were prospectively enrolled.

View Article and Find Full Text PDF

Background & Aims: Hepatic encephalopathy (HE), one of the most serious prognostic factors for mortality in alcohol-related cirrhosis (ALD cirrhosis), is not recorded in Danish healthcare registries. However, treatment of HE with lactulose, the universal first-line treatment, can be identified through data on filled prescriptions. This study aimed to investigate if lactulose can be used as a surrogate marker of HE.

View Article and Find Full Text PDF

Background: Chemokines and their receptors, which regulate lymphoid organ development and immune cell trafficking, are integral to the mechanisms underlying viral control, hepatic inflammation, and liver damage in chronic hepatitis C (CHC) infection. This study explores the potential relationship between serum chemokine levels/polymorphisms and hepatitis C infection in affected individuals, with a particular focus on their utility as biomarkers across different stages of fibrosis.

Methods And Results: Serum levels of the chemokines CXCL11, CXCL12, and CXCL16 were measured in patients with mild/moderate and advanced fibrosis due to CHC, as well as in healthy controls, using the ELISA method.

View Article and Find Full Text PDF

The accurate assessment of body composition in cirrhosis is challenging as fluid accumulation affects most techniques. The whole-body counter is a state-of-the-art method that measures total body potassium (TBK) unbiased by fluid, from which body cell mass (BCM) is derived. This pilot study in 20 patients with cirrhosis evaluated bedside tools including the liver frailty index (LFI), bioimpedance analysis-based phase angle, calf circumference (CC), and BMI (body mass index)/edema-adjusted CC, and explored their association with TBK and BCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!