Conditioned taste aversion (CTA) in Lymnaea is brought about by pairing a sucrose solution (the conditioned stimulus, CS) with an electric shock (the unconditioned stimulus, US). Following repeated CS-US pairings, CTA occurs and it is consolidated into long-term memory (LTM). The best CTA is achieved, if snails are food-deprived for 1 day before training commences. With a longer period of food deprivation (5 days), learning and memory formation does not occur. It has been hypothesized that the levels of insulin in the central nervous system (CNS) are very important for CTA to occur. To test his hypothesis, we injected insulin directly into 5-day food-deprived snails. The injection of insulin, as expected, resulted in a decrease in hemolymph glucose concentration. Consistent with our hypothesis with insulin injection, learning and memory formation of CTA occurred. That is, the 'insulin spike' is more important than an increase in hemolymph glucose concentration for CTA-LTM. If we injected an insulin receptor antibody into the snails before the insulin injection, learning was formed but memory formation was not, which is consistent with our previous study. Therefore, a rise in the insulin concentration (i.e., insulin spike) in the CNS is considered to be a key determining factor in the process of CTA-LTM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2014.10.006 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Biological Sciences, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, USA.
Dementia refers to an umbrella phenotype of many different underlying pathologies with Alzheimer's disease (AD) being the most common type. Neuropathological examination remains the gold standard for accurate AD diagnosis, however, most that we know about AD genetics is based on Genome-Wide Association Studies (GWAS) of clinically defined AD. Such studies have identified multiple AD susceptibility variants with a significant portion of the heritability unexplained and highlighting the phenotypic and genetic heterogeneity of the clinically defined entity.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara, 207, Nishihara, Okinawa 903-0213, Japan.
The subiculum is a main output part of the hippocampal formation and important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to the brain regions related to the spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), while the dorsal subiculum (dSub) seemed to comprise only one region (Sub1).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:
Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.
Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!