Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Norepinephrine transporter knock-out mice (NET-KO) exhibit depression-resistant phenotypes. They manifest significantly shorter immobility times in both the forced swim test and the tail suspension test. Moreover, biochemical studies have revealed the up-regulation of other monoamine transporters (dopamine and serotonin) in the brains of NET-KO mice, similar to the phenomenon observed after the chronic pharmacological blockade of norepinephrine transporter by desipramine in wild-type (WT) animals. NET-KO mice are also resistant to stress, as we demonstrated previously by measuring plasma corticosterone concentration. In the present study, we used a microdissection technique to separate target brain regions and the TaqMan Low Density Array approach to test the expression of a group of genes in the NET-KO mice compared with WT animals. A group of genes with altered expression were identified in four brain structures (frontal and cingulate cortices, dentate gyrus of hippocampus and basal-lateral amygdala) of NET-KO mice compared with WT mice. These genes are known to be altered by antidepressant drugs administration. The most interesting gene is Crh-bp, which modulates the activity of corticotrophin--releasing hormone (CRH) and several CRH-family members. Generally, genetic disturbances within noradrenergic neurons result in biological changes, such as in signal transduction and intercellular communication, and may be linked to changes in noradrenaline levels in the brains of NET-KO mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2014.10.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!