In this work, a natural polysaccharide gellan gum (GG) has been modified with methacrylic groups (GG-MA) and combined with polyethylene glycol dimethacrylate (PEG-DMA) in order to create novel injectable hydrogels that can be easily delivered through a needle and photocross-linked in the injection site. A novel synthetic procedure for methacrylation of GG has been proposed to better control its derivatization. Different degrees of functionalization have been achieved and their effects on the solubility and mechanical properties of GG-MA were investigated. A good balance in terms of hydrophilicity and elasticity of the corresponding hydrogels was identified, although not suitable enough as injectable material for the treatment of damaged soft tissues. For this reason, several concentrations and different molecular weights of PEG-DMA were investigated to modulate the composition of GG-MA hydrogels and overcome their extreme fragility. Swelling abilities of the hydrogels in different media were studied as a key parameter able to affect the release profile of loaded therapeutic agents. Model molecules having different spherical hindrance (sulindac and vitamin B12) were then chosen to study how the hydrogels were able to modulate their diffusion profiles over time. Finally, the hydrogel's safety was evaluated trough an MTT cytotoxicity test on human fibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.10.046DOI Listing

Publication Analysis

Top Keywords

gellan gum
8
hydrogels
5
injectable photocross-linkable
4
photocross-linkable gels
4
gels based
4
based gellan
4
gum methacrylate
4
methacrylate tool
4
tool biomedical
4
biomedical application
4

Similar Publications

3D-printed ultra-sensitive strain sensors using biogels prepared from fish gelatin and gellan gum.

Carbohydr Polym

March 2025

Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China. Electronic address:

The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors.

View Article and Find Full Text PDF

This paper investigated the effects of heating and pH on the stability of emulsions of non-covalent complexes of gellan gum (GG) and soy protein isolate (SPI). As a result, the GG-SPI complexes stabilized emulsion exhibited a minimum emulsion particle size (945 ± 23 nm), a maximum absolute values of zeta-potential (-32.7 ± 0.

View Article and Find Full Text PDF

In this study, pH-responsive nanocomposite films with high barrier properties were obtained by the addition of a mixture of methyl red and bromothymol blue to the inner film and Silicon dioxide nanoparticles (nano-SiO) to the outer film matrix. The incorporation of nano-SiO resulted in a notable reduction in the oxygen permeability coefficient and water vapor transmission rate, accompanied by an enhancement in the UV barrier and tensile strength. In comparison with the control sample (0 % nano-SiO), the film containing 1 % nano-SiO exhibited a 57.

View Article and Find Full Text PDF

The use of bioresorbable compositions has been considered a promising therapeutic approach for treating compromised bone tissues. Gellan gum (GG) is a predominant polysaccharide recognized for its exceptional biocompatibility and biodegradability, facile bio-fabrication, and customizable mechanical attributes, rendering it well-suited for developing versatile bone scaffolds. On the other hand, MXene nanosheets have been declared a representational filler to augment the osteogenic effect and amend the mechanical properties of the polymeric biomaterials.

View Article and Find Full Text PDF

Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!