Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native neuroserpin and its dysfunctional conformation isoforms: the proteolytically cleaved conformer, the inactive latent conformer, and the polymeric species. Based on circular dichroism and fluorescence spectroscopy, we present an experimental validation of the latent model and highlight the main structural features of the different conformers. In particular, emission spectra of aromatic residues yield distinct conformational fingerprints, that provide a novel and simple spectroscopic tool for selecting serpin conformers in vitro. Based on the structural relationship between cleaved and latent serpins, we propose a structural model for latent NS, for which an experimental crystallographic structure is lacking. Molecular Dynamics simulations suggest that NS conformational stability and flexibility arise from a spatial distribution of intramolecular salt-bridges and hydrogen bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332418PMC
http://dx.doi.org/10.1016/j.bbapap.2014.10.002DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
functional dysfunctional
4
dysfunctional conformers
4
conformers human
4
neuroserpin
4
human neuroserpin
4
neuroserpin characterized
4
characterized optical
4
optical spectroscopies
4
spectroscopies molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!