Transducin (T) is a heterotrimer of Tα, Tβ, and Tγ subunits. In the presence of light-activated rhodopsin, 8-azidoguanosine triphosphate (8-N3GTP) was covalently incorporated into T in a UV-light photodependent manner, with a low stoichiometry of 0.02 mol of 8-N3GTP per mol of T. Although Tα was preferentially labeled by 8-N3GTP, Tβ and Tγ were also modified. Photolabeling of T was specifically inhibited by GDP and GTP, but not by β,γ-imido-guanosine 5'-triphosphate (GMP-PNP), indicating that 8-N3GTP was modifying the GDP binding site of the holoenzyme. This was consistent with the observation that the photoaffinity probe was completely hydrolyzed to 8-N3GDP by T activated by illuminated rhodopsin. The formation of intermolecular disulfide associations in T was also determined because photolabeling of T was performed under non-reducing conditions. We established that Cys-347 of Tα was the major residue involved in the formation of disulfide-linked T oligomers. Other cysteines of Tα, such as Cys-321, also participated in the formation of disulfide bonds, revealing a complex pattern of intermolecular disulfide cross-links that led to the polymerization of T. The spontaneous generation of these cystines in Tα inhibited the light-dependent GTPase and GMP-PNP binding activities of T. A model was constructed illustrating that when two heterotrimers dimerize through the formation of disulfide bridges between the Cys-347 of their Tα subunits, the guanine ring of the 8-N3GDP bound to one T molecule might approach to the Tβγ-complex of the other heterotrimer. This model provides an explanation for the additional photolabeling of Tβ and Tγ by 8-N3GTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2014.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!