Background: Thymoquinone (TQ) has been documented to possess chemo-preventive and chemotherapeutic antitumor effects. Studies reported that TQ inhibits the growth of cancer cells in animal models, culture and xenografted tumors. Molecular mechanisms underlying these anticancer effects were attributed to inductions of cell cycle arrest, apoptosis, oxidative damage of cellular macromolecules, blockade of tumor angiogenesis and inhibitions in migration, invasion and metastasis of cancer cells. On the other hand, human telomere DNA plays a role in regulating genes' transcriptions. It folds up into G-quadruplex structures that inhibit telomerase enzyme over-expressed in cancerous cells. Molecules that selectively stabilize G-quadruplex are potential anticancer agents. Therefore, this work aimed to explore the interaction of TQ with G-quadruplex DNA as a possible underlying mechanism for the anticancer effect of TQ.

Methods: Interactions of TQ with telomeric G-quadruplex (5'-AGGG(TTAGGG)3-3') and duplex DNAs were studied using UV-vis, fluorescence, circular dichroism, liquid and solid NMR (1H and 13C), melting temperature and docking simulation.

Results: Changes in UV-vis, CD, fluorescence, 1H NMR and 13C NMR, spectra as well as melting temperatures and docking simulations provided evidences for TQ's interactions with G-quadruplex. TQ was found to interact with G-quadruplex on two binding sites adjacent to the TTA loop with binding constants 1.80×10(5) and 1.12×10(7) M(-1). Melting temperatures indicated that TQ stabilized G-quadruplex by 5.6 °C and destabilized ct-DNA by 5.1 °C. Selectivity experiment indicated that TQ is preferentially binding to G-quadruplex over duplex with selectivity coefficients of 2.80-3.33×10(-3). Results suggested an intercalation binding mode based on π-π stacking.

Conclusion: Our results propose that TQ can possibly act as a G-quadruplex DNA stabilizer and subsequently contribute to the inhibition of telomerase enzyme and cancer's proliferation.

General Significance: Our results represent a change in the paradigms reported for structural features of G-quadruplex's stabilizers and anticancer mechanisms of TQ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2014.10.018DOI Listing

Publication Analysis

Top Keywords

g-quadruplex dna
12
g-quadruplex
10
telomeric g-quadruplex
8
cancer cells
8
telomerase enzyme
8
uv-vis fluorescence
8
nmr 13c
8
melting temperatures
8
anticancer
5
interaction human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!