Objective: To evaluate the reduction in phantom pain and sensation with combined training of progressive muscle relaxation, mental imagery, and phantom exercises.

Design: Randomized controlled prospective trial with 2 parallel groups.

Setting: Amputee unit of a rehabilitation hospital.

Participants: Subjects with unilateral lower limb amputation (N=51) with phantom limb pain (PLP) and/or phantom limb sensation (PLS).

Interventions: The experimental group performed combined training of progressive muscle relaxation, mental imagery, and phantom exercises 2 times/wk for 4 weeks, whereas the control group had the same amount of physical therapy dedicated to the residual limb. No pharmacological intervention was initiated during the trial period.

Main Outcome Measures: The Prosthesis Evaluation Questionnaire and the Brief Pain Inventory were used to evaluate changes over time in different aspects (intensity, rate, duration, and bother) of PLS and PLP. Blind evaluations were performed before and after treatment and after 1-month follow-up.

Results: The experimental group showed a significant decrease over time in all the Prosthesis Evaluation Questionnaire domains (in terms of both PLS and PLP; P<.04 for both) and the Brief Pain Inventory (P<.03). No statistically significant changes were observed in the control group. Between-group analyses showed a significant reduction in intensity (average and worst pain) and bother of PLP and rate and bother of PLS at follow-up evaluation, 1 month after the end of the treatment.

Conclusions: Combined training of progressive muscle relaxation, mental imagery, and modified phantom exercises should be taken into account as a valuable technique to reduce phantom limb pain and sensation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apmr.2014.09.035DOI Listing

Publication Analysis

Top Keywords

progressive muscle
12
muscle relaxation
12
relaxation mental
12
mental imagery
12
imagery phantom
12
phantom limb
12
randomized controlled
8
combined training
8
training progressive
8
experimental group
8

Similar Publications

Background: Motor imagery is the mental representation of a movement without physical execution. When motor imagery is performed to enhance motor learning and performance, participants must reach a temporal congruence between the imagined and actual movement execution. Identifying factors that can influence this capacity could enhance the effectiveness of motor imagery programs.

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.

View Article and Find Full Text PDF

Zebrafish () have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!