8-Hydroxyquinoline derivatives and their metal complexes have recently awakened interest as promising therapeutic agents in cancer therapy. We have previously synthesized and evaluated glucoconjugated 8-hydroxyquinolines as copper ionophores activated by β-glucosidases. In order to further evaluate the crucial role of the sugar, we designed and synthesized a series of new galactoconjugates of 8-hydroxyquinolines and investigated their biological properties in comparison with the 8-hydroxyquinoline analogs. The effect of copper(II) ions on their biological activities was evaluated. In particular, two compounds possess a pharmacologically relevant antiproliferative activity against specific tumor cells in the presence of copper(II) ions. Furthermore, the antiproliferative activity of the selected galactosides was successfully investigated in the presence of β-galactosidase as a preliminary model of antibody directed enzyme prodrug therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2014.09.017 | DOI Listing |
Dalton Trans
January 2025
CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.
In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.
View Article and Find Full Text PDFSci Rep
January 2025
General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114 Republic of Korea; Medicinal Chemistry & Pharmacology, University of Science & Technology, Daejeon 34113 Republic of Korea. Electronic address:
KX-01 (tirbanibulin, Klisyri®) is a recently FDA-approved drug for treating actinic keratosis, with a distinct dual mechanism of action combining microtubule disruption and non-ATP-competitive Src inhibition. This unique mechanism and novel chemotype highlight KX-01's potential as a payload for antibody-drug conjugates. In this study, we synthesized and evaluated KX-01 derivatives to enhance anticancer potency and explore functional groups suitable for antibody conjugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!