A novel NAD(+)-dependent D-mandelate dehydrogenase was identified from Lactobacillus brevis (LbDMDH). After purified to homogeneity, the optimum pH and temperature for oxidation of D-mandelate were pH 10.0 and 40 °C, and the Km and kcat were 1.1 mM and 355 s(-1) respectively. Employing the LbDMDH together with a mandelate racemase from Pseudomonas putida and a leucine dehydrogenase (EsLeuDH) from Exiguobacterium sibiricum, we established a three-step one-pot domino reaction system for preparing chiral L-phenylglycine from racemic mandelic acid with internal cofactor recycling. Under the optimum conditions, 30.4 g rac-mandelic acid (0.2 M) at 1L scale had been converted into chiral L-phenylglycine, with 96.4% conversion, 86.5% isolation yield, >99% eep and 50.4 gL(-1)d(-1) space-time yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2014.10.026 | DOI Listing |
Enzyme Microb Technol
May 2020
Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China. Electronic address:
L-Phenylglycine (L-PHG) is a member of unnatural amino acids, and becoming more and more important as intermediate for pharmaceuticals, food additives and agrochemicals. However, the existing synthetic methods for L-PHG mainly rely on toxic cyanide chemistry and multistep processes. To provide green, safe and high enantioselective alternatives, we envisaged cascade biocatalysis for the one-pot synthesis of L-PHG from racemic mandelic acid.
View Article and Find Full Text PDFJ Agric Food Chem
March 2019
Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University, 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China.
Phenylglyoxylic acid (PGA) are key building blocks and widely used to synthesize pharmaceutical intermediates or food additives. However, the existing synthetic methods for PGA generally involve toxic cyanide and complex processes. To explore an alternative method for PGA biosynthesis, we envisaged cascade biocatalysis for the one-pot synthesis of PGA from racemic mandelic acid.
View Article and Find Full Text PDFJ Agric Food Chem
March 2018
Henan Provincial Engineering Laboratory of Insect Bio-reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North , Nanyang Normal University, 1638 Wolong Road , Nanyang , Henan 473061 , People's Republic of China.
d-Mandelate dehydrogenase (DMDH) has the potential to convert d-mandelic acid to phenylglyoxylic acid (PGA), which is a key building block in the field of chemical synthesis and is widely used to synthesize pharmaceutical intermediates or food additives. A novel NAD-dependent d-mandelate dehydrogenase was cloned from Lactobacillus harbinensi (LhDMDH) by genome mining and expressed in Escherichia coli BL21. After being purified to homogeneity, the oxidation activity of LhDMDH toward d-mandelic acid was approximately 1200 U·mg, which was close to four times the activity of the probe.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2017
Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. Electronic address:
Enterococcus faecium NAD-dependent d-mandelate dehydrogenase (d-ManDH) belongs to a ketopantoate reductase (KPR)-related d-2-hydroxyacid dehydrogenase family, and exhibits broad substrate specificity toward bulky hydrophobic 2-ketoacids, preferring C3-branched substrates. The ternary complex structure of d-ManDH with NADH and anilino(oxo)acetate (AOA) revealed that the substrate binding induces a shear motion of the N-terminal domain along the C-terminal domain, following the hinge motion induced by the NADH binding, and allows the bound NADH molecule to form favorable interactions with a 2-ketoacid substrate. d-ManDH possesses a sufficiently wide pocket that accommodates the C3 branched side chains of substrates like KPR, but unlike the pocket of KPR, the pocket of d-ManDH comprises an entirely hydrophobic surface and an expanded space, in which the AOA benzene is accommodated.
View Article and Find Full Text PDFJ Biotechnol
February 2015
Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
A novel NAD(+)-dependent D-mandelate dehydrogenase was identified from Lactobacillus brevis (LbDMDH). After purified to homogeneity, the optimum pH and temperature for oxidation of D-mandelate were pH 10.0 and 40 °C, and the Km and kcat were 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!