Maturity-related changes in venom toxicity of the freshwater stingray Potamotrygon leopoldi.

Toxicon

Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.

Published: December 2014

Aquatic venomous animals such as stingrays represent a largely untapped source for venom-based drug development. However, the major challenge for a potential drug development pipeline is the high inter- and intraspecific variability in toxicity and venom composition. As of today, little is known about maturity-driven changes in these traits in stingrays. The present study investigates the differences in toxicity and venom composition in different maturity stages of the freshwater stingray Potamotrygon leopoldi. This species can be found in the Xingú River basin (Brazil), where it mainly feeds on invertebrates, while being predated by other stingrays or large catfishes. P. leopoldi, as commonly known for stingrays, can cause severe injuries with the venomous dentine spine located at its tails. The toxicity of tissue extracts of juvenile and mature specimens was recorded on a myoblast cell culture bioassay. Venom composition and bioactivity of compounds were analyzed with planar chromatography linked to an Aliivibrio fischeri bioassay. Results revealed a decrease in venom toxicity during maturation, but no changes in venom composition. These findings may indicate that toxicity in mature specimens becomes evolutionary less important, probably due to a decrease in predation pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2014.10.011DOI Listing

Publication Analysis

Top Keywords

venom composition
16
changes venom
8
venom toxicity
8
freshwater stingray
8
stingray potamotrygon
8
potamotrygon leopoldi
8
drug development
8
toxicity venom
8
mature specimens
8
venom
6

Similar Publications

Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.

View Article and Find Full Text PDF

Melittin-Induced Structural Transformations in DMPG and DMPS Lipid Membranes: A Langmuir Monolayer and AFM Study.

Molecules

December 2024

Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.

In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers.

View Article and Find Full Text PDF

Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition.

Arch Toxicol

January 2025

Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

Article Synopsis
  • Snake envenomation is a major global health issue, particularly in rural areas of tropical and subtropical regions, highlighting the need for better therapeutic approaches.
  • Traditional antivenoms have limitations, but advancements in omics technologies like metabolomics and proteomics are improving our understanding of venom and potential treatments.
  • By exploring metabolic changes and identifying venom proteins, researchers aim to develop novel inhibitors and next-generation antivenoms, ultimately leading to more effective treatments for snake bites.
View Article and Find Full Text PDF

Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential.

View Article and Find Full Text PDF

Snakebite envenomation is a public health issue that can lead to mortality and physical consequences. It is estimated that 5.4 million venomous snake bites occur annually, with 130,000 deaths and 400,000 amputations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!