We report the isolation and characterization by proteomic approach of a native conopeptide, named BnIA, from the crude venom of Conus bandanus, a molluscivorous cone snail species, collected in the South central coast of Vietnam. Its primary sequence was determined by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation of the pure native fraction. BnIA was present in high amounts in the crude venom and the complete sequence of the 16 amino acid peptide was the following GCCSHPACSVNNPDIC*, with C-terminal amidation deduced from Edman's degradation and theoretical monoisotopic mass calculation. Sequence alignment revealed that its -C1C2X4C3X7C4- pattern belongs to the A-superfamily of conopeptides. The cysteine connectivity of BnIA was 1-3/2-4 as determined by partial-reduction technique, like other α4/7-conotoxins, reported previously on other Conus species. Additionally, we found that native α-BnIA shared the same sequence alignment as Mr1.1, from the closely related molluscivorous Conus marmoreus venom, in specimens collected in the same coastal region of Vietnam. Functional studies revealed that native α-BnIA inhibited acetylcholine-evoked currents reversibly in oocytes expressing the human α7 nicotinic acetylcholine receptors, and blocked nerve-evoked skeletal muscle contractions in isolated mouse neuromuscular preparations, but with ∼200-times less potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2014.10.006 | DOI Listing |
J Venom Anim Toxins Incl Trop Dis
May 2020
Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Vietnam.
Background: Conopeptides are neuropharmacological peptides derived from the venomous salivary glands of cone snails. Among 29 superfamilies based on conserved signal sequences, T-superfamily conotoxins, which belong to the smallest group, include four different frameworks that contain four cysteines denominated I, V, X and XVI. In this work, the primary structure and the cysteine connectivity of novel conotoxin of were determined by tandem mass spectrometry using collision-induced dissociation.
View Article and Find Full Text PDFToxicon
December 2014
CNRS, Centre de Recherche de Gif - FRC3115, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, F-91198 Gif-sur-Yvette, France. Electronic address:
We report the isolation and characterization by proteomic approach of a native conopeptide, named BnIA, from the crude venom of Conus bandanus, a molluscivorous cone snail species, collected in the South central coast of Vietnam. Its primary sequence was determined by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation of the pure native fraction. BnIA was present in high amounts in the crude venom and the complete sequence of the 16 amino acid peptide was the following GCCSHPACSVNNPDIC*, with C-terminal amidation deduced from Edman's degradation and theoretical monoisotopic mass calculation.
View Article and Find Full Text PDFMar Drugs
June 2014
Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
Toxicon
December 2013
CNRS, Centre de Recherche de Gif - FRC3115, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, F-91198 Gif-sur-Yvette, France; University of Nha Trang, Institute of Biotechnology and Environment, Nha Trang, Khanh Hoa, Viet Nam. Electronic address:
Cone snail (genus Conus) venoms provide a rich source of small bioactive peptides known as conopeptides or conotoxins, which are highly interesting in pharmacological studies for new drug discovery. Conus species have evolved expressing a variety of conopeptides, adapted to the biological targets of their own specific preys at their living environments. Therefore, the potential proteomic evaluation of Conus venom components, poorly studied, is of great interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!