A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of reciprocal inhibitory coupling in model neurons. | LitMetric

Effects of reciprocal inhibitory coupling in model neurons.

Biosystems

School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.

Published: January 2015

Central pattern generators are neuron networks that produce vital rhythmic motor outputs such as those observed in mastication, walking and breathing. Their activity patterns depend on the tuning of their intrinsic ionic conductances, their synaptic interconnectivity and entrainment by extrinsic neurons. The influence of two commonly found synaptic connectivities--reciprocal inhibition and electrical coupling--are investigated here using a neuron model with subthreshold oscillation capability, in different firing and entrainment regimes. We study the dynamics displayed by a network of a pair of neurons with various firing regimes, coupled by either (i) only reciprocal inhibition or by (ii) electrical coupling first and then reciprocal inhibition. In both scenarios a range of coupling strengths for the reciprocal inhibition is tested, and in general the neuron with the lower firing rate stops spiking for strong enough inhibitory coupling, while the faster neuron remains active. However, in scenario (ii) the originally slower neuron stops spiking at weaker inhibitory coupling strength, suggesting that the electrical coupling introduces an element of instability to the two-neuron network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2014.11.002DOI Listing

Publication Analysis

Top Keywords

inhibitory coupling
12
reciprocal inhibition
12
inhibition electrical
8
electrical coupling
8
stops spiking
8
coupling
6
neuron
5
effects reciprocal
4
reciprocal inhibitory
4
coupling model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!