The effect of nanoparticles on plankton dynamics: a mathematical model.

Biosystems

Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Oman. Electronic address:

Published: January 2015

A simple modification of the Rosenzweig-MacArthur predator (zooplankton)-prey (phytoplankton) model with the interference of the predators by adding the effect of nanoparticles is proposed and analyzed. It is assumed that the effect of these particles has a potential to reduce the maximum physiological per-capita growth rate of the prey. The dynamics of nanoparticles is assumed to follow a simple Lotka-Volterra uptake term. Our study suggests that nanoparticle induce growth suppression of phytoplankton population can destabilize the system which leads to limit cycle oscillation. We also observe that if the contact rate of nanoparticles and phytoplankton increases, then the equilibrium densities of phytoplankton as well as zooplankton decrease. Furthermore, we observe that the depletion/removal of nanoparticles from the aquatic system plays a crucial role for the stable coexistence of both populations. Our investigation with various types of functional response suggests that Beddington functional response is the most appropriate representation of the interaction of phytoplankton-nanoparticles in comparison to other widely used functional responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2014.11.003DOI Listing

Publication Analysis

Top Keywords

functional response
8
nanoparticles
5
nanoparticles plankton
4
plankton dynamics
4
dynamics mathematical
4
mathematical model
4
model simple
4
simple modification
4
modification rosenzweig-macarthur
4
rosenzweig-macarthur predator
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Eisai Inc., Nutley, NJ, USA.

Background: Lecanemab is a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils. In two clinical studies (phase 2, NCT01767311 and phase 3 ClarityAD, NCT03887455) in early Alzheimer's disease, lecanemab substantially reduced amyloid PET and significantly slowed clinical decline on multiple measures of cognition and function, including CDR-SB at 18 months. Models describing the change in amyloid PET and CDR-SB in response to lecanemab treatment were used to explore the impact of changing from the initial dosage regimen (10 mg/kg every 2 weeks [Q2W]) to a less intensive maintenance dosing regimen (10 mg/kg every 4 weeks [Q4W]) on clinical efficacy, and to explore the optimal duration of the initial dosing regimen.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.

Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vigil Neuroscience, Inc, Watertown, MA, USA.

Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!