Over the past decade, adipose tissues have been increasingly known for their endocrine properties, that is, their ability to secrete a number of adipocytokines that may exert local and/or systemic effects. In addition, adipose tissues have long been recognized as significant sites for steroid hormone transformation and action. We hereby provide an updated survey of the many steroid-converting enzymes that may be detected in human adipose tissues, their activities and potential roles. In addition to the now well-established role of aromatase and 11β-hydroxysteroid dehydrogenase (HSD) type 1, many enzymes have been reported in adipocyte cell lines, isolated mature cells and/or preadipocytes. These include 11β-HSD type 2, 17β-HSDs, 3β-HSD, 5α-reductases, sulfatases and glucuronosyltransferases. Some of these enzymes are postulated to bear relevance for adipose tissue physiology and perhaps for the pathophysiology of obesity. This elaborate set of steroid-converting enzymes in the cell types of adipose tissue deserves further scientific attention. Our work on 20α-HSD (AKR1C1), 3α-HSD type 3 (AKR1C2) and 17β-HSD type 5 (AKR1C3) allowed us to clarify the relevance of these enzymes for some aspects of adipose tissue function. For example, down-regulation of AKR1C2 expression in preadipocytes seems to potentiate the inhibitory action of dihydrotestosterone on adipogenesis in this model. Many additional studies are warranted to assess the impact of intra-adipose steroid hormone conversions on adipose tissue functions and chronic conditions such as obesity, diabetes and cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2014.11.011 | DOI Listing |
Dig Dis Sci
January 2025
Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70401, Taiwan.
Aim: Sarcopenic obesity (SO) is associated with adverse outcomes in diseased patients. This study aimed to examine the prevalence and risks associated with SO, with a focus on the impact of SO on cardiovascular risk in patients with MASLD.
Materials And Methods: In this cross-sectional study, patients with MASLD were prospectively enrolled.
Sleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
Tissue Eng Regen Med
January 2025
Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Electrical Engineering, Columbia University, New York, New York, USA.
Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!