Transport stress induces apoptosis in rat myocardial tissue via activation of the mitogen-activated protein kinase signaling pathways.

Heart Vessels

CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China.

Published: February 2016

The present study aimed to elucidate the mechanism of myocardial damage induced by simulated transport stress. Sprague-Dawley rats were subjected to 35 °C and 60 rpm (0.1×g rcf) on a constant temperature shaker. The blood samples were prepared for detection of epinephrine (E), norepinephrine (NE), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and serum cardiac troponin T (cTNT); myocardium samples were prepared for morphological examination and signaling protein quantitative. The result showed that plasma norepinephrine (NE) and epinephrine (E) concentrations increased in all stressed groups (P < 0.01). Levels of serum cardiac troponin T (cTNT) were elevated in both the S2d (P < 0.05) and S3d groups (P < 0.01). The concentration of plasma BNP was increased significantly in S3d group (P < 0.05); the difference in ANP was not remarkable. Morphological observation demonstrated obvious microstructure and ultrastructure damage after simulated transport stress. There was also a significant increase in the number of TUNEL-positive cardiomyocytes in stressed hearts. Western blot analysis found that the mitogen-activated protein kinase (MAPK) pathways were activated by strengthening phosphorylation of ASK-1, JNK, P38 and ERK in rat myocardial tissue after simulated transport stress (P < 0.05, P < 0.01). In addition, the ratio of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins was increased in stressed rats (P < 0.01), and the amount of cleaved-caspase3 increased in all stressed rats (P < 0.01). The expression of cleaved-caspase9 protein was also elevated in S2d and S3d groups (P < 0.01). Consequently simulated transport stress induced obvious myocardial damage, which may be attributed to the activation of caspase 9-mediated mitochondrial apoptotic pathway and MAPK pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00380-014-0607-3DOI Listing

Publication Analysis

Top Keywords

transport stress
20
simulated transport
16
increased stressed
12
groups 001
12
rat myocardial
8
myocardial tissue
8
mitogen-activated protein
8
protein kinase
8
myocardial damage
8
samples prepared
8

Similar Publications

Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans.

Life Sci Space Res (Amst)

February 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.

The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.

View Article and Find Full Text PDF

Ribes diacanthum Pall modulates bile acid homeostasis and oxidative stress in cholestatic mice by activating the SIRT1/FXR and Keap1/Nrf2 signaling pathways.

J Ethnopharmacol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China. Electronic address:

Ethnopharmacological Relevance: Cholestatic liver injury (CLI) is a pathophysiological syndrome characterized by the accumulation of bile acids (BAs), which leads to significant hepatic dysfunction. This condition is frequently associated with disturbances in BAs homeostasis and the induction of oxidative stress. Ribes diacanthum Pall (RDP), a conventional folk medicinal plant, has been employed in Mongolia, the Inner Mongolia region of China, and other areas for the remediation of hepatic disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!