Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy.

Int J Pharm

Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China. Electronic address:

Published: January 2015

Specific targeting ability and good tissue penetration are two critical requirements for tumor targeted delivery systems. Systematical selected peptides from a library may meet these two requirements. RLW was such a cell penetrating peptide that could specifically target to non-small cell lung cancer cells (A549). In this study, RLW was linked onto nanoparticles (RNPs) and then the RNPs were used for lung cancer targeting delivery. A traditional cell penetrating peptide, R8 (RRRRRRRR), was used as control. In vitro cellular uptake study demonstrated that modification with RLW specifically enhanced the uptake by A549 cells rather than human umbilical vein endothelial cells, while modification with R8 increased the uptake by both cells. Furthermore, the modification with RLW specifically elevated the penetration into A549 tumor spheroids rather than glioma cell (U87, used as in vivo control) spheroids. And the in vivo imaging further demonstrated RNPs could target to A549 xenografts rather than U87 xenografts. Importantly, the distribution of RNPs in normal organs was approximately the same as that of unmodified nanoparticles. However, R8 modified nanoparticles elevated the distribution in almost all the tissues. These results demonstrated that RLW was superior in A549 tumor targeted delivery. After loaded with docetaxel, an anti-microtube agent, different formulations could effectively induce the A549 cell apoptosis, and inhibit the growth of A549 spheroids in vitro. While in vivo, RNPs displayed the best antitumor effect. The tumor volume was significantly lower than other groups, which was only 33.3% as that of saline group. In conclusion, in vitro RLW could specifically target to A549 cells and enhance the cytotoxicity of docetaxel. In vivo, RLW could significantly enhance the A549 xenografts targeting delivery and led to improved antitumor effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2014.11.029DOI Listing

Publication Analysis

Top Keywords

cell penetrating
12
penetrating peptide
12
targeting delivery
12
a549
9
tumor targeted
8
targeted delivery
8
lung cancer
8
modification rlw
8
a549 cells
8
cells modification
8

Similar Publications

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.

View Article and Find Full Text PDF

Investigation of potential cytotoxicity of a water-soluble, red-fluorescent [70]fullerene nanomaterial in .

Nanotoxicology

December 2024

Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.

Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.

View Article and Find Full Text PDF

Guidelines for plasma membrane protein detection by surface biotinylation.

Mol Cells

December 2024

Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea. Electronic address:

Plasma membrane proteins are crucial for signal transduction, trafficking, and cell-cell interactions, all of which are vital for cell survival. These proteins, including G-protein coupled receptors (GPCRs), ion channels, transporters, and receptors, are key drug targets due to their central role in receiving and amplifying cellular signals. However, the isolation and purification of plasma membrane proteins pose significant challenges because of their integration with phospholipid bilayers and the small fraction of these proteins present in the plasma membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!