Here, we report synthesis and biological evaluation of fluorescent nandrolone-3-carboxymethyloxime derivatives conjugated with green-emitting bodipy dye via PEG linkers. All the newly-synthesized compounds were evaluated for their effect on cell proliferation in vitro in MCF-7, LNCaP, PC-3 and HEK 293T model cell lines using WST-1 assay. By means of live-cell fluorescence microscopy, the intracellular localization of nandrolone-bodipy conjugates was revealed in endoplasmic reticulum. Moreover, we performed competitive localization study with nonfluorescent nandrolone, metandrolone, boldenone, trenbolone, and testosterone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2014.10.002 | DOI Listing |
Phys Chem Chem Phys
January 2025
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
Importance: Using albumin-adjusted calcium is commonly recommended for for measuring calcium, but with little empirical evidence to support the practice.
Objective: To assess the correlation between total calcium measurements (with or without adjustment) vs the ionized calcium level as a reference standard.
Design, Setting, And Participants: This was a population-based cross-sectional study in the province of Alberta, Canada, including adults tested for serum total calcium and ionized calcium simultaneously between January 1, 2013, and October 31, 2019.
Invest Ophthalmol Vis Sci
January 2025
Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.
Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.
Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.
Invest Ophthalmol Vis Sci
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!