Increased evidence of chemo-resistance, toxicity and carcinogenicity necessitates search for alternative approaches for determining next generation cancer therapeutics and targets. We therefore tested the efficacy of plant alkaloid berberine on human papilloma virus (HPV) -18 positive cervical cancer cell HeLa systematically-involving certain cellular, viral and epigenetic factors. We observed disruptions of microtubule network and changes in membrane topology due to berberine influx through confocal and atomic force microscopies (AFM). We examined nuclear uptake, internucleosomal DNA damages, mitochondrial membrane potential (MMP) alterations and cell migration assays to validate possible mode of cell death events. Analytical data on interactions of berberine with pBR322 through fourier transform infrared (FTIR) and gel migration assay strengthen berberine׳s biologically significant DNA binding abilities. We measured cellular uptake, DNA ploidy and DNA strand-breaks through fluorescence activated cell sorting (FACS). To elucidate epigenetic modifications, in support of DNA binding associated processes, if any, we conducted methylation-specific restriction enzyme (RE) assay, methylation specific-PCR (MSP) and expression studies of histone proteins. We also analyzed differential interactions and localization of cellular tumor suppressor p53 and viral oncoproteins HPV-18 E6-E7 through siRNA approach. We further made in-silico approaches to determine possible binding sites of berberine on histone proteins. Overall results indicated cellular uptake of berberine through cell membrane depolarization causing disruption of microtubule networks and its biological DNA binding abilities that probably contributed to epigenetic modifications. Results of modulation in p53 and viral oncoproteins HPV-18 E6-E7 by berberine further proved its potential as a promising chemotherapeutic agent in cervical cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2014.09.048 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
Epigenetic processes are the critical events in carcinogenesis. Histone modification plays a crucial role in gene expression regulation, where histone deacetylases (HDACs) are key players in epigenetic processes. Inhibiting HDACs has shown promise in modern cancer therapy.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.
View Article and Find Full Text PDFJ Mol Evol
January 2025
Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte , USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!