The angiotensin I converting enzyme 2 (ACE2) is a key factor in the maintenance of intestinal homeostasis. Dysregulation of homeostasis can lead to inflammation of the colon (colitis), which can cause life-threatening enfeeblement or even cancer. Animal models are valuable surrogates in deciphering the pathology behind such human conditions and for screening of putative therapeutic targets or treatment paradigms. However, development of disease models can be time-consuming and technical demanding, which might hamper their application-value. In this study, we genetically disrupted the mouse Ace2 gene by direct injection of in vitro transcribed mRNA coding for transcription activator-like effector nucleases (TALENs) into the cytoplasm of outbred Kunming mouse zygotes. Consequently, somatic mutations were induced with an efficiency of 57%, of which 39% were frameshift mutations. Moreover, all modifications were stably transferred during germline transmission. In Ace2-knockout male mice (Ace2(-/y)), we observed severe chemical induced colitis, characterized by considerable weight loss, diarrhea and a shortened colon length. Histologically, Ace2 mutations resulted in the infiltration of leukocytes and the overt damage of the intestinal mucosal barrier. In addition, we detected an increased expression of inflammatory cytokines in the colon tissue of Ace2(-/y) mice. Collectively, the data indicate that high targeting efficiency and heritability can be achieved in an outbred mouse model by zygote injection of TALEN mRNA. Furthermore, the generated Ace2(-/y) mice display phenotypic traits reminiscent of colitis and we anticipate that such mice can be of value in studies of the intestinal microbiome or fecal transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102211PMC
http://dx.doi.org/10.1007/s11248-014-9855-3DOI Listing

Publication Analysis

Top Keywords

ace2-/y mice
8
mice
5
generation outbred
4
ace2
4
outbred ace2
4
ace2 knockout
4
knockout mice
4
mice rna
4
rna transfection
4
transfection talens
4

Similar Publications

Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake.

View Article and Find Full Text PDF

ACE2 pathway regulates thermogenesis and energy metabolism.

Elife

January 2022

Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure.

View Article and Find Full Text PDF

Rationale: There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function.

Objective: We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function.

Methods And Results: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2, Akita (type 1 diabetes mellitus), and ACE2-Akita mice.

View Article and Find Full Text PDF

[Establishment of Ace2 knockout mouse model with CRISPR/Cas9 gene targeting technology].

Sheng Li Xue Bao

August 2019

Institute of Clinical Medicine & Institute of Cardiovascular Disease & Hypertension Laboratory, the Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.

The aim of the study was to establish Ace2 (angiotensin-converting enzyme 2) knockout mouse model with CRISPR/Cas9 gene targeting technology. A vector targeting Ace2 gene knockout was constructed with the primers of single-guide RNA (gRNA), and then transcribed gRNA/Cas9 mRNA was micro-injected into the mouse zygote. The deletion of exons 3 to 18 of Ace2 gene in mice was detected and identified by PCR and gene sequencing.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2 were crossed with Akita mice, a model of type 1 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!