The potency of antivenoms is assessed by analyzing the neutralization of venom-induced lethality, and is expressed as the Median Effective Dose (ED50). The present study was designed to investigate the pathophysiological mechanisms responsible for lethality induced by the venom of Bothrops asper, in the experimental conditions used for the evaluation of the neutralizing potency of antivenoms. Mice injected with 4 LD50s of venom by the intraperitoneal route died within ∼25 min with drastic alterations in the abdominal organs, characterized by hemorrhage, increment in plasma extravasation, and hemoconcentration, thus leading to hypovolemia and cardiovascular collapse. Snake venom metalloproteinases (SVMPs) play a predominat role in lethality, as judged by partial inhibition by the chelating agent CaNa2EDTA. When venom was mixed with antivenom, there was a venom/antivenom ratio at which hemorrhage was significantly reduced, but mice died at later time intervals with evident hemoconcentration, indicating that other components in addition to SVMPs also contribute to plasma extravasation and lethality. Pretreatment with the analgesic tramadol did not affect the outcome of the neutralization test, thus suggesting that prophylactic (precautionary) analgesia can be introduced in this assay. Neutralization of lethality in mice correlated with neutralization of in vitro coagulant activity in human plasma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2014.11.223 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil.
We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow-CDRy and white-CDRw) of venom with a sample of (CDT) venom and examined their neutralization by antivenom against CDT venom. The venoms were screened for enzymatic and coagulant activities using standard assays, and electrophoretic profiles were compared by SDS-PAGE. Neutralization was assessed by preincubating venoms with crotalic antivenom and assaying the residual activity.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-901, Brazil.
Antivenoms are the only effective treatment for snakebite envenomation and have saved countless lives over more than a century. Despite their value, antivenoms present risks of adverse reactions. Current formulations contain a fraction of nonspecific antibodies and serum proteins.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake , focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
Naja haje envenoming manifests organ system disorders leading to severe fatalities due to the venom's toxins. The neutralizing capacity of kaempferol has been reported against some medically significant snake venoms with exception of N. haje venom (NhV).
View Article and Find Full Text PDFFront Pharmacol
November 2024
Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!